DOI QR코드

DOI QR Code

Extracting week key issues and analyzing differences from realtime search keywords of portal sites

포털사이트 실시간 검색키워드의 주간 핵심 이슈 선정 및 차이 분석

  • 정민영 (광주여자대학교 실버케어학과)
  • Received : 2016.11.01
  • Accepted : 2016.12.20
  • Published : 2016.12.28

Abstract

Since realtime search keywords of portal sites are arranged in descending order by instant increasing rates of search numbers, they easily show issues increasing in interests for a short time. But they have the limits extracted different results by portal sites and not shown issues by a period. Thus, to find key issues from the whole realtime search keywords for certain period, and to show results of summarizing them and analyzing differences, is significant in providing the basis of understanding issues more practically and in maintaining consistency of them. This paper analyzes differences of week key issues extracted from week analysis of realtime search keywords provided by two typical portal sites. The results of experiments show that the portal group means of realtime search keywords by the independent t-test and the survival functions of realtime search keywords by the survival analysis are statistically significant differences.

포털사이트의 실시간 검색키워드는 검색횟수의 순간증가율이 높은 순서대로 나타나므로 짧은 시간에 관심도가 급상승하는 이슈는 쉽게 보여주지만, 포털사이트별로 다른 결과가 도출되고 일정기간에 대한 이슈는 나타내지 못하는 한계가 있다. 따라서, 일정기간 동안의 전체 실시간 검색키워드에서 핵심 이슈를 찾고 각 포털사이트별로 집계한 결과와 이들의 차이를 분석한 결과를 보여주는 것은 이슈를 보다 실제적으로 이해할 수 있는 근거를 제공하고 자주 변화하는 실시간 검색키워드에 대한 일관성을 유지할 수 있게 해준다는 측면에서 의미가 있다. 이를 위해 본 논문에서는 대표적인 두 개의 포털사이트에서 제공하는 실시간 검색키워드의 주간 분석을 통하여 주간 핵심 이슈를 추출하고 이들의 차이를 분석한다. 두 포털사이트의 실시간 검색키워드 중요도 점수에 대한 독립표본 t검정과 실시간 검색키워드 생존함수에 의한 생존분석 결과, 두 포털사이트는 차이가 있다는 것을 보였다.

Keywords

References

  1. Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding, "Data mining with big data" IEEE transactions on knowledge and data engineering, Vol. 26, No. 1, pp. 97-107, 2014 https://doi.org/10.1109/TKDE.2013.109
  2. Hsinchun Chen, Roger HL Chiang, and Veda C. Storey, "Business Intelligence and Analytics: From Big Data to Big Impact", MIS quarterly Vol. 36, No. 4, pp. 1165-1188, 2012
  3. Miner G, Elder J, Hill T, Nisbet R, Delen D, and Fast A, "Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications", p.1000, Academic Press, 2012
  4. Kyoo-Sung Noh, "A Exploratory Study on Big-data based Election Campaign Strategy Model in South Korea", Journal of Digital Convergence, Vol. 11, No. 12, pp. 113-120, 2013 https://doi.org/10.14400/JDPM.2013.11.12.113
  5. Soonduck Yoo, Kwangdon Choi, and Sungyoung Shin, "Characterizing Business Strategy in a New Ecosystem of Big Data", Journal of Digital Convergence, Vol. 12, No. 4, pp. 1-9, 2014
  6. Su-Hyeon Namn, "Knowledge Creation Structure of Big Data Research Domain", Journal of Digital Convergence, Vol. 13, No. 9, pp. 129-136, 2015 https://doi.org/10.14400/JDC.2015.13.9.129
  7. Shinkon Kim, Sukjun Lee, and JeonggonA Kim, "Study on the Development of Phased Big Data Distribution Model Based on Big Data Distribution Ecology", Journal of Digital Convergence, Vol. 14, No. 5, pp. 95-106, 2016 https://doi.org/10.14400/JDC.2016.14.5.95
  8. Seong-Hoon Lee and Dong-Woo Lee, "Current Status of Big Data Utilization", Journal of Digital Convergence, Vol. 11, No. 2, pp. 229-233, 2013 https://doi.org/10.14400/JDPM.2013.11.12.229
  9. Kyoung-Ho Choi and Jeong-Hye Park, "The Analysis of Public Awareness about Literary Therapy by Utilizing Big Data Analysis - The aspects of convergence literature and statistics", Journal of Digital Convergence, Vol. 13, No. 4, pp. 395-404, 2015 https://doi.org/10.14400/JDC.2015.13.4.395
  10. Min-Gu Song and Sun-Bae Kim, "A Study of improving reliability on prediction model by analyzing method Big data", Journal of Digital Convergence, Vol. 11, No. 6, pp. 103-112, 2013
  11. Xiao Fang and Olivia R. Liu Sheng, "Designing a better web portal for digital government: a web-mining based approach", Proceedings of the 2005 national conference on Digital government research. Digital Government Society of North America, pp. 277-278, 2005
  12. Simon Dennis, Peter Bruza, and Robert McArthur, "Web Searching: A Process-Oriented Experimental Study of Three Interactive Search Paradigms", Journal of the American Society for Information Science and Technology, Vol. 53, No. 2, pp. 120-133, 2002 https://doi.org/10.1002/asi.10015
  13. Bing Liu, "Sentiment analysis and opinion mining", p.168, Morgan & Claypool Publishers, 2012
  14. Matthew A. Russell, "Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More", p.411, O'Reilly Media, Inc., 2013
  15. Hyeong-Sik Yang and Sun-Bae Kim, "Evaluation Method of Big Data Efficiency", Journal of Digital Convergence, Vol. 11, No. 8, pp. 31-39, 2013 https://doi.org/10.14400/JDPM.2013.11.8.031
  16. Naver Search Help, "Realtime hot searches", https://help.naver.com/support/service/main.nhn?serviceNo=606&categoryNo=1989, 2015
  17. Daum Search Help, "Realtime hot issues" http://cs.daum.net/faq/15/14957.html#28971, 2016
  18. KISO Validation Committee, "The fourth validation report about realtime hot searches of Naver", 2015
  19. Jon Starkweather, "Introduction to basic Text Mining in R", p.10, University of North Texas, 2014
  20. Min-Yeong Chong, "Selecting a key issue through association analysis of realtime search words", Journal of Digital Convergence, Vol. 13, No. 12, pp. 161-169, 2015
  21. Rupert G. Miller, "Survival analysis-2nd Edition", p.238, John Wiley & Sons, 2011
  22. Manish Kumar Goel, Pardeep Khanna, and Jugal Kishore, "Understanding survival analysis: Kaplan-Meier estimate", International journal of Ayurveda research, Vol. 1, No. 4, pp. 212-216, 2010