DOI QR코드

DOI QR Code

An SDN-based Bandwidth Control Scheme considering Traffic Variation in the Virtualized WLAN Environment

가상화된 WLAN 환경에서 트래픽 변화를 고려한 SDN 기반 대역폭 제어 기법

  • 문재원 (부산대학교 전기전자컴퓨터공학과) ;
  • 정상화 (부산대학교 전기전자컴퓨터공학과)
  • Received : 2016.03.22
  • Accepted : 2016.09.05
  • Published : 2016.11.15

Abstract

A virtual network technology can provide a network reflecting the requirements of various services. The virtual network can distribute resources of the physical network to each virtual slice. An efficient resource distribution technique is needed to reflect the requirements of various services. Existing bandwidth distribution techniques can only control downlink traffic without taking traffic conditions on the network into account. Downlink and uplink share the same resources in a wireless network. The existing bandwidth distribution techniques assumed that all stations generate saturated traffic. Therefore, the existing bandwidth distribution technique cannot make traffic isolation in a virtual wireless network. In this paper, we proposed a traffic-based bandwidth control techniques to solve these problems. We applied Software-Defined Networking(SDN) to the virtual wireless network, monitored the traffic at each station, and searched for stations that generated unsaturated traffic. We also controlled both uplink and downlink traffics dynamically based on monitoring information. Our system can be implemented with legasy 802.11 clients and SDN-enabled APs. After the actual test bed configuration, it was compared to existing techniques. As a result, the distribution performance of the proposed technique was improved by 14% in maximum.

가상 네트워크 기술은 다양한 서비스의 요구조건을 반영한 네트워크를 제공할 수 있다. 다양한 서비스의 요구조건을 반영하기 위해 효율적인 리소스 분배 기술이 필요하다. 기존의 트래픽 대역폭 분배 기법들은 다운링크 트래픽만 제어하거나 네트워크의 트래픽 상황을 고려하지 않는다. 무선 네트워크에서 다운링크와 업링크는 같은 자원을 공유한다. 또한, 기존의 트래픽 대역폭 분배 기법들은 모든 스테이션이 포화된 트래픽을 발생시킨다고 가정한다. 그래서 기존의 트래픽 대역폭 분배 기법들은 가상 무선 네트워크에서 트래픽 제어를 할 수 없다. 본 논문에서는 이러한 문제들을 해결하기 위해 트래픽 기반 대역폭 제어 기법을 제안한다. 가상 네트워크에 SDN을 적용하고 각 스테이션의 트래픽을 모니터링하고 비포화 트래픽을 발생시키는 스테이션을 탐색한다. 또한, 모니터링 정보를 기반으로 업링크와 다운링크 트래픽을 동적으로 제어한다. 실제 테스트베드 구성 후, 기존의 기법과 비교 결과, 트래픽 대역폭 분배 성능이 최대 14% 개선되었다.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. Benson, Theophilus, Aditya Akella, and David A. Maltz, "Network Traffic Characteristics of Data Centers in the Wild," Proc. of the 10th ACM SIGCOMM conference on Internet measurement, pp. 267-280, 2010.
  2. Karjaluoto, Heikki. "An investigation of third generation (3G) mobile technologies and services," Contemporary Management Research, Vol. 2, No. 2, pp. 97, 2007.
  3. Kennedy M, Ksentini A, Hadjadj-Aoul Y, Muntean G. "Adaptive energy optimization in multimediacentric wireless devices: a survey," IEEE Communications Surveys & Tutorials, Vol. 15, No. 2, pp. 768-786, 2013. https://doi.org/10.1109/SURV.2012.072412.00115
  4. Yucek, Tevfik, and Huseyin Arslan, "A survey of spectrum sensing algorithms for cognitive radio applications," IEEE communications surveys & tutorials, Vol. 11, No. 1, pp. 116-130, 2009. https://doi.org/10.1109/SURV.2009.090109
  5. Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V., "Software-defined and virtualized future mobile and wireless networks: A survey," Mobile Networks and Applications, Vol. 20, No. 1, pp. 4-18, 2015. https://doi.org/10.1007/s11036-014-0533-8
  6. Open Networking Foundation, "Software-defined networking: the new norm for networks," white paper, 2012.
  7. Open Networking Foundation, "OpenFlow Switch Specification version 1.5.0," 2014.
  8. Nick McKeown, "OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM Computer Communication Review, Vol. 38, No. 2, pp. 69-74, 2008. https://doi.org/10.1145/1355734.1355746
  9. IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 8: Medium Access Control(MAC) Quality of Service Enhancements, 2005.
  10. Pong, Dennis, and T. Moors, "Using Transmission opportunities and judicious parameter selection in enhancing real-time applications over 802.11 wireless LANs," Proc. of ATNAC, 2003.
  11. Banchs, Albert, Pablo Serrano, and Huw Oliver. "Proportional fair throughput allocation in multirate IEEE 802.11 e wireless LANs," Wireless Networks, Vol. 13, No. 5, pp. 649-662, 2007. https://doi.org/10.1007/s11276-006-6972-9
  12. Chou, Chun-Ting, and Kang G. Shin. "Contention-based airtime usage control in multirate IEEE 802.11 wireless LANs," IEEE/ACM Transactions on Networking, Vol. 14, No. 6, pp. 1179-1192, 2006. https://doi.org/10.1109/TNET.2006.886336
  13. Joshi, Tarun, et al., "Airtime fairness for IEEE 802.11 multirate networks," IEEE Transactions on Mobile Computing, Vol. 7, No. 4, pp. 513-527, 2008. https://doi.org/10.1109/TMC.2007.70740
  14. Abeysekera, BA Hirantha Sithira, Takahiro Matsuda, and Tetsuya Takine, "Dynamic contention window control mechanism to achieve fairness between uplink and downlink flows in IEEE 802.11 wireless LANs," IEEE Transactions on Wireless Communications, Vol. 7, No. 9, pp. 3517-3525, 2008. https://doi.org/10.1109/TWC.2008.070304
  15. Gomez, K., Riggio, R., Rasheed, T., and Chlamtac, I., "On efficient airtime-based fair link scheduling in IEEE 802. 11-based wireless networks," Proc. of the 22nd IEEE PIMRC, pp. 930-934, 2011.
  16. J. Bicket, D. Aguayo, S. Biswas, and R. Morris, "Architecture and Evaluation of an Unplanned 802.11b Mesh Network," Proc. of ACM MOBICOM, 2005.
  17. K. Guo, S. Sanadhya, and T. Woo, "ViFi: virtualizing WLAN using commodity hardware," Proc. of ACM MobiArch, 2014.
  18. T. Tay and K. Chua, "A capacity analysis for the IEEE 802.11 MAC protocol," Wireless Networks, 2001.
  19. Ubiquiti Routerstation Pro, [Online]. Available: http://www.ubnt.com/support/rspro/
  20. Dipjyoti Saikia, SeokHwan Kong, Nikhil Malik, Dayoung Kim. OpenMUL. [Online]. Available: http://www.openmul.org.