Acknowledgement
Supported by : 충남대학교
References
- P. Domingos and G. Hulten, Mining high-speed data streams, Proc. of KDD, 2000.
- G. Hulton, L. Spencer and P. Domingos, Mining time-changing data streams, Proc. of KDD, 2001.
- S. Nishimura, M.Terabe, K. Hashimoto, K. Mihara, Learning higher accuracy decision trees from concept drifting data streams, LNAI 5027, pp. 179-188, 2003.
- H. Wang, W. Fan, P. Yu and J. Han, Mining concept- drifting data streams using ensemble classifiers, Proc. of KDD, 2003.
- A. Bifet and R. Gavalda, Learning from timechanging data with adaptive windowing, Proc. of SDM, 2007.
- J. Z. Kolter and M. A. Malloof, Dynamic weighted majority : An ensemble method for drifting concepts, Journal of machine learning research 8, pp. 2755-2790, 2007.
- A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby and R. Gavalda, New ensemble methods for evolving data streams, Proc. of KDD, 2009.
- H. Zhao and P. Yuen, Incremental linear discriminant analysis for face recognition, IEEE transactions on systems, man, and cybernetics-part B:cybernetics, Vol. 38, No. 1, pp. 210-221, 2008. https://doi.org/10.1109/TSMCB.2007.908870
- L. Liu, Y. Jiang and Z. Zhou, Least square incremental linear discriminant analysis, Proc. of ICDM, 2009.
- T. K. Kim, B. Stenger, J. Kittler and R. Cipolla, Incremental linear discriminant analysis using sufficient spanning sets and its applications, International journal of computer vision 91, pp. 216-232, 2011. https://doi.org/10.1007/s11263-010-0381-3
- Y. Yeh and Y. Wang, A rank-one update method for least squares linear discriminant analysis with concept drift, Pattern recognition 46, pp. 1267-1276, 2013. https://doi.org/10.1016/j.patcog.2012.11.008
- L.I. Kuncheva and C.O. Plumpton, Adaptive learning rate for online linear discriminant classifiers, LNCS 5342 pp. 510-519, 2008.
- L. Rutkowski, M. Jaworski, L. Pietruczuk and P. Duda, Decision trees for mining data streams based on the gaussian approxiamtion, IEEE transactions on Knowledge and Data Engineering 26, pp. 108- 119, 2014. https://doi.org/10.1109/TKDE.2013.34
- P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison Wesley, Boston, 2006.
- Y. Law and C. Zaniolo, An adaptive nearest neighbor classification algorithm for data streams, LNAI 3721, pp. 108-120. 2005.
- R. Klinkenberg, Detecting concept drift with support vector machines, Proc. of ICML, 2000.
- J. Gama, P. Medas and P. Rodrigues, Learning with drift detection, Proc. of SBIA Brazilian Symposium on Artificial Intelligence, 2004.
- M. Baena-Garcia, J. Campo-Avilla, R. Fidalgo, A. Bifet, R. Gavalda, R. Moales-Bueno, Early drift detection method, in: proceedings of ECML PKDD 2006 Workshop on Knowledge Discovery from Data Streams, 2006.
- G. Ross, N. Adams, D. Tasoulis and D.Hand, Exponentially weighted moving average charts for detecting concept drift, Pattern recognition letters 33, pp. 191-198, 2012. https://doi.org/10.1016/j.patrec.2011.08.019
- R. Duda, P. Hart and D. Stork, Pattern Classification, Wiley-Interscience, New York, 2001.
- W. Hager, Updating the inverse of a matrix, SIAM review 31(2), pp. 221-239, 1989. https://doi.org/10.1137/1031049
- A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, Moa: Massive online analysis, Journal of Machine Learning Research 11, pp. 1601-160, 2010.
- Splice-2 comparative evaluation: Electricity pricing, technical report, UNSW-CSE-TR-9905 of The University of New South Wales, 1999.
- J. Blackard and D. Dean, Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables, Computers and Electronics in Agriculture Vol. 24, No. 3, pp. 131-151, 1999. https://doi.org/10.1016/S0168-1699(99)00046-0
- A. Bifet and R. Gavalda, Adaptive learning from evolving data stream, Proc. of IDA, 2009.