참고문헌
- C.J.S Alves and R. Kress, 2002 On the far field operator in elastic obstacle scattering IMA J. Appl. Math. 67 1-21 https://doi.org/10.1093/imamat/67.1.1
- K. Anagnostopoulos and A. Charalambopoulos. The linear sampling method for the transmission problem in 2D anisotropic elasticity Inverse Problems (2006) 22, 553-577. https://doi.org/10.1088/0266-5611/22/2/011
- F. Cakoni and D. Colton Qualitative Methods in Inverse Scattering Theory: An Introduction.(Springer-Verlag), 1988.
- D. Colton Partial Differential Equations: An Introduction. (New York:Random House, Inc.), 1988.
- D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. (New York:Springer-Verlag), 1992.
- D. Colton and A. Kirsch, A simple method for solving the inverse scattering problems in the resonance region. Inverse Problems (1996) 12, 383-393. https://doi.org/10.1088/0266-5611/12/4/003
- D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems (1999) 13, 1477-93
- D. Natrosvilli, Z. Tediashvili, Mixed type direct and inverse scattering problems, in Problems and Methods in Mathematical Physics (eds. Elschner J, Gohberg I and Silbermann B), Operator Theory: Advances and Applications(2001) 121 (Birkhauser, Basel) 366-389
- P. C. Hansen Rank-Deficient and Descrete Ill-Posed Problems. SIAM, Philadelphia, 1998.
- P. C. Hansen The L-Curve and its use in the numerical treatment of inverse problems. Computational Inverse Problems in Electrocardiology. WIT Press 119-142 (2001)
- G. Hu, A. Kirsch and M. Sini, Some Inverse Problem arising from elastic scattering by rigid obstacles, Inverse Problems (2013) 29, 1-21
- A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Problems (1998) 14, 1489-1512. https://doi.org/10.1088/0266-5611/14/6/009
- K.Kim, K.H. Leem and G. Pelekanos An Alternative to Tikhonov Regularization for Linear Sampling Methods, Acta Applicandae Mathematicae (2010) 112, 171-180. https://doi.org/10.1007/s10440-009-9558-6
- V. D. Kupradze, Dynamical Problems in Elasticity, in "Progress in Solid Mechanics". North-Holland, Amsterdam (1963).
- G. Pelekanos and V. Sevroglou, Shape reconstrution of a 2D-elastic penetrable object via the L-curve method. J. Inv. Ill-Posed problems (2006) 14, No.4, 1-16. https://doi.org/10.1515/156939406776237438
- Pelekanos G and Sevroglou V 2003 Inverse scattering by penetrable objects in twodimensional elastodynamics J. Comp. Appl. Math. 151 129-140 https://doi.org/10.1016/S0377-0427(02)00742-2
- Sevroglou V and Pelekanos G 2001 An inversion algorithm in two-dimensional elasticity J. Math. Anal. Appl. 263 277-293 https://doi.org/10.1006/jmaa.2001.7638
- Sevroglou V and Pelekanos G 2002 Two dimensional elastic Herglotz functions and their applications in inverse scattering Journal of Elasticity 68 123-144 https://doi.org/10.1023/A:1026059224433
- Sevroglou V 2005 The far-field operator for penetrable and absorbing obstacles in 2D inverse elastic scattering Inverse Problems 17 717-738