과제정보
연구 과제 주관 기관 : Kyungsung University
참고문헌
- D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), 724-760.
- D. N. Arnold, F. Breezi, B. Cockburn, L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001), 1749-1779.
- Z. Chen, On the relationship of various discontinuous finite element methods for secondorder elliptic equations, East-West J. Numer. Math. 9 (2001), 99-122.
- H. Chen, Z. Chen, Stability and convergence of mixed discontinuous finite element methods for second-order diffferential problems, J. Numer. Math. 11 (2003), 253-287. https://doi.org/10.1515/156939503322663449
- Z. Chen, J. Douglas, Approximation of coecients in hybrid and mixed methods for nonlinear parabolic problems, Math. Applic. Comp. 10 (1991), 137-160.
- J. Douglas, T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Lect. Notes. Phys. 58 (1976), 207-216. https://doi.org/10.1007/BFb0120591
- J. Douglas, J. E. Roberts, Global estimates for mixed methods for second order elliptic problems, Math. Comp. 44 (1985), 39-52. https://doi.org/10.1090/S0025-5718-1985-0771029-9
-
I. Guo, H. Z. Chen,
$H^1$ -Galerkin mixed finite element methods for the Sobolev equation, Systems Sci. Math. Sci. 26 (2006), 301-314. - C. Johnson, V. Thomee, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numer. 14 (1981), 41-78.
-
J. -C. Nedelec, Mixed finite elements in
${\mathbb{R}}^3$ , Numer. Math. 35 (1980), 315-341. https://doi.org/10.1007/BF01396415 - J. Nitsche, Uber ein Variationspringzip zvr Losung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15. https://doi.org/10.1007/BF02995904
- M. R. Ohm, H. Y. Lee, J. Y. Shin, Error estimates for discontinuous Galerkin method for nonlinear parabolic equations, J. Math. Anal. Appl. 315 (2006), 132-143. https://doi.org/10.1016/j.jmaa.2005.07.027
- M. R. Ohm, H. Y. Lee, J. Y. Shin, Error estimates for fully discrete discontinuous Galerkin method for nonlinear parabolic equations, J. Appl. Math. & Informatics 28 (2010), 953-966.
- M. R. Ohm, H. Y. Lee, J. Y. Shin, Higher order discontinuous Galerkin finite element methods for nonlinear parabolic equations, J. Korean Soc. Ind. Appl. Math. 18 (2014), 337-350. https://doi.org/10.12941/jksiam.2014.18.337
-
A. K. Pani, An
$H^1$ -Galerkin mixed finite element methods for parabolic partial differential equations, SIAM J. Numer. Anal. 25 (1998), 712-727. -
A. K. Pani, G. Fairweather,
$H^1$ -Galerkin mixed finite element methods for parabolic integro-differential equations, IMA J. Numer. Anal. 22 (2002), 231-252. https://doi.org/10.1093/imanum/22.2.231 - R. Raviart, J. Thomas, A mixed finite element method for second order elliptic problems, Lecture Notes in Mathematics 606 (1977), 292-315. https://doi.org/10.1007/BFb0064470
- B. Rivire, M. F. Wheeler, A discontinuous Galerkin method applied to nonlinear parabolic equations, Discontinuous Galerkin methods:theory, computation and applications [Eds by B. Cockburn, G. E. Karniadakis and C. -W. Shu], Lect. Notes Comput. Sci. Eng. 11 (2000), 231-244. https://doi.org/10.1007/978-3-642-59721-3_17
- M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1978), 152-161. https://doi.org/10.1137/0715010