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ON THE INDEFINITE POSITIVE QUADRIC Qn−2+

Seong-Kowan Hong

Abstract. The generalized Gaussian image of a spacelike surface in Ln

lies in the indefinite positive quadric Qn−2
+ in the open submanifold CPn−1

+ of

the complex projective space CPn−1. The purpose of this paper is to find

out detailed information about Qn−2
+ ⊂ CPn−1

+ .

1. The Generalized Gauss Map

We begin with fixing our terminology and notation. Let Ln = (Rn, g) de-
note Lorentzian n-space with the flat Lorentzian metric g of index 1. Let M
be a connected smooth orientable 2 manifold, and X : M −→ Ln be a smooth
imbedding of M into Ln. Throughout this paper, we assume that X is a space-
like imbedding or M is a spacelike surface in Ln, that is, the pull back X∗g of
the Lorentzian metric g via X is a positive definite metric on M .

Let M = (M, ḡ) be a spacelike surface in Ln with the induced metric ḡ = X∗g
so that X : M −→ Ln is an isometric imbedding. By (u1, u2) we always denote
isothermal coordinates compatible with the orientation on M . Then the metric
ḡ is expressed locally as

ḡ = λ2((du1)2 + (du2)2), λ > 0. (1)

It is well known that (u1, u2) is defined around each point of M , and we may
regard M as a Riemann surface by introducing a complex local coordinate
z = u1 + iu2.

We shall define the generalized Gauss map using local coordinates. Let M
be a spacelike surface in Ln, or a Riemann surface. Locally, if u1 and u2 are
isothermal parameters in a neighborhood of p on M , then M is defined near
p by a map X(z) = (x1(z), . . . , xn(z)) ∈ Ln, where z = u1 + iu2. Define the
generalized Gauss map Ψ by

Ψ(z) =
∂X

∂u1
+ i

∂X

∂u2
,
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where Ψ(z) ∈ CPn−1+ = {(z1, . . . , zn) ∈ CPn−1 | −z1z1 +z2z2 + · · ·+znzn > 0}.
Let us think of the effect of choosing another isothermal parameters ũ1, ũ2, and
z̃ = ũ1 + iũ2. Since the change of coordinates on a Riemann surface is analytic,
we know that

∂X

∂ũ1
+ i

∂X

∂ũ2
= (

∂X

∂u1
+ i

∂X

∂u2
)(
∂u1
∂ũ1
− i∂u1

∂ũ2
) ,

which implies Ψ(z) = Ψ(z̃) in CPn−1+ . Since the pair of vectors ∂X
∂u1

, ∂X
∂u2

are
orthogonal and equal in length in Ln, it follows that

∂X

∂u1
+ i

∂X

∂u2
∈ Qn−2+ ,

where Qn−2+ = {(z1, . . . , zn) ∈ CPn−1+ | −z12 + z2
2 + . . . + zn

2 = 0}. Conse-
quently, the generalized Gauss map Ψ is given locally by

(u1, u2) −→ ∂X

∂u1
+ i

∂X

∂u2
∈ Qn−2+ ⊂ CPn−1+ . (2)

We may represent the Gauss map locally by

Ψ(z) = (φ1(z), . . . , φn(z)) ,

where φk = 2∂xk

∂z = ∂xk

∂u1
− i∂xk

∂u2
. Denote (φ1, . . . , φn) by Φ. Then Ψ is holomor-

phic when Φ is antiholomorphic and Ψ is antiholomorphic when Φ is holomor-
phic. We will consider Φ as the generalized Gauss map instead of Ψ.

2. On the Indefinite Positive Quadric Qn−2+

Note that the complex projective space CPn−1 = CPn−1+ ∪CPn−10 ∪CPn−1− ,
where the generalized Gaussian image of a spacelike surface in Ln lies in the
indefinite positive quadric Qn−2+ in CPn−1+ . The indefinite Fubini-Study metric

on CPn−1+ is given by

ds2 = 2

∑
j<k εj | zjdzk − zkdzj |2

(−z1z1 + z2z2 + · · · znzn)
2 , (3)

where ε1 = −1, and εj = 1 otherwise.

Proposition 2.1. Let H be the hyperplane in CPn−1(n ≥ 3) defined by

H : zn−1 − izn = 0 (4)

Then (Qn−2)∗ = Qn−2 \H is biholomorphic to Cn−2 under the correspondence

(z1, · · · , zn) = α

(
2ξ1, · · · , 2ξn−2, 1− 2

n−2∑
i=1

εi(ξi)
2, i

(
1− 2

n−2∑
i=1

εi(ξi)
2

))
, (5)

where α = zn−1−izn
2 , and

ξ1 =
z1

zn−1 − izn
, · · · , ξn−2 =

zn−2
zn−1 − izn

. (6)
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Proof. Given any point (z1, · · · , zn) ∈ (Qn−2)∗, if we define ξk by (6), then by
the defining equation −(z1)2 + (z2)2 + · · ·+ (zn)2 = 0 of Qn−2,

−(ξ1)2 + · · ·+ (ξn−2)2 = −zn−1 + izn
zn−1 − izn

.

Hence

zn−1 = (zn−1−izn)+(zn−1+izn)
2

= i
(
zn−1−izn

2

)(
1−

∑n−2
j=1 εj(ξj)

2
)

,

and

zn = i (zn−1−izn)−(zn−1+izn)
2

= i
(
zn−1−izn

2

)(
1 +

∑n−2
j=1 εj(ξj)

2
)

,

which yields (5).
Conversely, given any (ξ1, · · · , ξn−2) ∈ Cn−2, setting

z1 = 2ξ1, · · · , zn−2 = 2ξn−2, zn−1 = 1−
n−2∑
j=1

εj(ξj)
2, zn = 1 +

n−2∑
j=1

εj(ξj)
2 (7)

gives a point z = (z1, · · · , zn) ∈
(
Qn−2

)∗
.

�

Proposition 2.2. Let H be the hyperplane in CPn−1(n ≥ 3) defined by

H : z1 − z2 = 0 . (8)

Then (Qn−2)∗ = Qn−2 \H is biholomorphic to Cn−2 under the correspondence

(z1, · · · , zn) =
z1 − z2

2

(
n−2∑
i=1

(ξi)
2 + 1,

n−2∑
i=1

(ξi)
2 − 1, 2ξ1, · · · , 2ξn−2

)
, (9)

where

ξ1 =
z3

z1 − z2
, · · · , ξn−2 =

zn
z1 − z2

. (10)

Proof. Proof is exactly the same as the proof of the Proposition 2.1 except for
the substitution (10).

�

Proposition 2.3. Suppose A ∈ CPn−1(n ≥ 3) satisfies
∑n
i=1 εi|ai|2 < 0. To

such an A, we may assign a real number t lying in the interval 0 ≤ t < 1, with
the following properties:

a) A is equivalent under the induced action of SO(1, n − 1) in CPn−1 to
(i,−t, 0, · · · , 0) = (1, it, 0, · · · 0).

b) t = 0 if and only if A is a real vector.
c) If t, s correspond to A, B, then A and B are equivalent if and only if

t = s.
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Proof. Consider first the case that A is a real vector. Since it is nonzero, we
may write A = λR where λ ∈ C and R is a real unit timelike vector in Ln.
Choose an oriented basis of Ln with e1 = R. In the new basis, A takes the form
(1, 0, · · · , 0) up to a constant factor λ, which gives a) with t = 0.

Suppose next that A is not a real vector. If we write A = R + iS, then R
and S must be linearly independent.We consider the effect of choosing different
homogeneous coordinates for the point A. That amounts to multiplying through
by a complex number reiθ, and the effect is to get a new pair of vectors T , U ,
where T + iU = reiθA. A direct computation shows that(

〈T,U〉, 〈T,T 〉−〈U,U〉2

)
= r2

[
cos 2θ sin 2θ
− sin 2θ cos 2θ

](
〈R,S〉, 〈R,R〉−〈S,S〉2

)
.

There is a unique value of θ( mod π) such that 〈T,U〉 = 0, and 〈T, T 〉−〈U,U〉 <
0. Since 〈T, T 〉+ 〈U,U〉 < 0, at least 〈T, T 〉 < 0. We may determine r uniquely
so that < T, T >= −1. Since Ln cannot have two orthogonal timelike vectors,
U must be spacelike or lightlike. But since Theorem 1.1[4] tells us that lightlike
vectors cannot be orthogonal to timelike vectors, U must be spacelike. Now we
may define orthonormal vectors e1, e2 by the conditions T = e1, U = te2, where
0 < t < 1. Complete them into an oriented orthonoraml basis e1, · · · , en of Ln.
Then the point A = T+iU has the coordinate (1, it, 0, · · · , 0) = (i,−t, 0, · · · , 0).
By combining the above arguments we prove a) and b). The value of t is given
by
√
< U,U >. Therefore the value is uniquely determined by the conditions

that A = T + iU , where 〈T,U〉 = 0, 〈T, T 〉 = −1, 〈U,U〉 > 0, 〈T, T 〉 < 0.Thus
the value of t is clearly SO(1, n−1)-invariant,and conversely if t = s, then there
is M ∈ SO(1, n− 1) such that MA = B. This completes the proof. �

Proposition 2.4. Suppose A ∈ CPn−1(n ≥ 3) satisfies
∑n
i=1 εi|ai|2 > 0. Un-

der the induced action of SO(1, n−1) in CPn−1, A satisfies one of the following
statements:

a) A is equivalent to (0, 0, · · · , t, i), 0 ≤ t ≤ 1, where t = 0 occurs only when
A is real, and t = 1 only when A ∈ Qn−2.

b) A is equivalent to (t, i, 0, · · · , 0), 0 ≤ t < 1, where t = 0 occurs only when
A is real.

c) A is equivalent to (1, 1,
√

2i, 0, · · · , 0).

Remark 1. The equivalence is unique in any case.

Proof. Consider first the case that A is a real vector. Since it is nonzero,
we may write A = λR, where λ ∈ C and R is a real unit spacelike vector
in Ln. Choose an oriented basis of Ln with either en = R or e2 = R. In
the new basis, A takes the form either (0, 0, · · · , 0, 1) or (0, 1, 0, · · · , 0) which
gives the case t = 0. Suppose next that A is not a real vector. If we denote
A = R + iS, then R and S must be linearly independent. If 〈R,S〉 = 0, and
〈R,R〉 − 〈S, S〉 = 0, then A ∈ Qn−2 and A is equivalent to (0, · · · , 0, 1, i) by
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taking an orthonormal basis of Ln with R = en−1, S = en. In the opposite
case, let T + iU = reiθ(R+ iS). Then we can find a unique value of θ( mod π)
such that 〈T,U〉 = 0, 〈T, T 〉 − 〈U,U〉 < 0. Since 〈T, T 〉 + 〈U,U〉 > 0, U must
be spacelike. Here we are excluding the case T = O since A is assumed to
be not a real vector. We may determine r uniquely so that 〈U,U〉 = 1. T
may be (nonzero) spacelike, timelike or lightlike. IfT is spacelike, define the
orthonormal vectors en−1, en by T = ten−1, U = en, where 0 < t < 1. If T
is timelike, define the orthonormal vectors e1, e2 by T = te1, U = e2,where
0 < t < 1. In either case, completing them to an oriented orthonormal basis
e1, · · · , en of Ln, the point A = T + iU has the coordinates (0, 0, · · · , t, i) or
(t, i, 0, · · · , 0)where 0 < t < 1. If T is lightlike, we can find out another lightlike

vector T̃ such that 〈T, T̃ 〉 = 1 and 〈U, T̃ 〉 = 0. Define

e1 =
T − T̃√

2
, e2 =

T + T̃√
2
, e3 = U .

Complete them into an oriented orthonormal basis e1, · · · , en of Ln. Then

the point A has the coordinate
(√

2
2 ,
√
2
2 , 1, 0, · · · , 0

)
. Since T is SO(1, n − 1)-

invariant in any case, the final statement is also true.
�

Proposition 2.5. Suppose A ∈ CPn−1(n ≥ 3) satisfies
∑n
i=1 εi|ai|2 = 0. Then

A is equivalent to (1, i, 0, · · · , 0), or (1, 1, 0, · · · , 0), under the induced SO(1, n−
1)-action in CPn−1.

Proof. If A is real, then A = λR for some λ ∈ C and lightlike vector R ∈ Ln.
Since there is another lightlike vector R̃ such that 〈R, R̃〉 = 1, by putting

e1 =
R− R̃√

2
, e2 =

R+ R̃√
2

,

A has the coordinate (1, 1, 0, · · · , 0) in CPn−1. Note that R and R̃ are linearly
independent. If A is not real, then there are two linearly independent vectors
R, S in Ln such that A = R + iS. Note that 〈R,S〉 6= 0.By multiplying
suitable complex number to A we can make A = T + iU , where 〈T,U〉 = 0,
〈T, T 〉 < 〈U,U〉, 〈U,U〉 = 1. Since 〈T, T 〉+ 〈U,U〉 = 0, 〈T, T 〉 = −1. Then with
T = e1, U = e2, A has the coordinate (1, i, 0, · · · , 0).

�

Let H be a hyperplane in CPn−1 defined by an equation
∑
εiaizi = 0,

A = (a1, · · · , an) ∈ Cn1 . Since
∑
εicaizi = 0 defines the same hyperplane,

we may consider A ∈ CPn−1. Let M ∈ SO(1, n − 1) and Z̃ = MZ. Then the
equation

∑
εiaizi = 0 is transformed into

∑
εiãiz̃i = 0 using the new coordinate

Z̃, where Ã = MA.
Combining this observation with Proposition 2.3, 2.4, and 2.5, we may get

the following proposition.
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Proposition 2.6. Let H be a hyperplane in CPn−1(n ≥ 3) defined by an
equation

∑
εiaizi = 0. Then H is uniquely determined as one of the following :

a) If A is a spacelike vector in Cn1 , then there exists M ∈ SO(1, n− 1) such

that if we set Z̃ = MZ, then H is transformed to c ˜zn−1− z̃n = 0 for some c ∈ C
of the form c = it, 0 ≤ t ≤ 1, cz̃1 − z̃2 = 0 for some c ∈ C of the form c = it,
0 ≤ t < 1, or −z̃1 + z̃2 +

√
2iz̃3 = 0;

b) If A is a timelike vector in Cn1 , then there exists M ∈ SO(1, n − 1) such

that if we set Z̃ = MZ, then H is transformed to z̃1 − cz̃2 = 0 for some c ∈ C
of the form c = it, 0 ≤ t < 1;

c) If A is a lightlike vector in Cn1 , then there exists M ∈ SO(1, n − 1) such

that if we set Z̃ = MZ, then H is transformed to z̃1 − iz̃2 = 0 or z̃1 − z̃2 = 0.

Proof. Use the transformation of a hyperplane by the SO(1, n− 1)-action.
�

Remark 2. Combining the above proposition together with proposition 1 and
2, we get the following fact: Let H be a tangent hyperplane to Qn−2. Then(
Qn−2

)∗
= Qn−2 \ H is biholomorphic to Cn−2 since H is transformed into

either zn−1 − izn = 0 or z1 − z2 = 0 under a suitable change of coordinates in
Ln.

Proposition 2.7. Let H be a hyperplane in CPn−1(n ≥ 3) defined by an
equation

∑
εiaizi = 0, where A = (a1, · · · , cn) is a timelike vector in Cn1 . Then

H ∩Qn−2 is isometric to the quadric defined by (kz2)
2

+ (z3)
2

+ · · ·+ (zn)
2

= 0

in CPn−2, where k = 1−c2
1−|c|2 , c = it, 0 ≤ t < 1.

Proof. Since ∂∂ log (
∑
εizizi) is invariant under the action of SO(1, n − 1) on

CPn−1+ , and the action of SO(1, n − 1) on Qn−2+ is an isometry, we may, by
proposition 6, assume H is given by

z1 − cz2 = 0, c = it, 0 ≤ t < 1 .

Note that H ∩Qn−2 = H ∩Qn−2+ . Let d =
√

1− |c|2, and put

z̃1 = 1
d (z1 − cz2) ,

z̃2 = 1
d (cz1 − z2) ,

z̃3 = z3, · · · , z̃n = zn .

The transformation from Z to Z̃ is in U(1, n − 1), that is, an isometry in the
indefinite Fubini-Study metric on CPn−1+ . From its converse,

z1 = 1
d (z̃1 − cz̃2) ,

z2 = 1
d (cz̃1 − z̃2) ,

z3 = z̃3, · · · , zn = z̃n .
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Since the hyperplane H has the equation z̃1 in the new coordinate system, it
follows that Qn−2+ ∩H satisfies

z̃1 = 0 ,(
1−c2
d2

)
z̃2

2 + z̃3
2 + · · ·+ z̃n

2
= 0 ,

|z̃2|2 + · · ·+ |z̃n|2 > 0 .

But the restriction of the indefinite Fubini-Study metric on CPn−1+ to the hyper-
plane z̃1 = 0 is just the usual Fubini-Study metric on CPn−2. Hence Qn−2 ∩H
is isometric to the quadric

k (z̃2)
2

+ (z̃3)
2

+ · · ·+ (z̃n)
2

= 0

in CPn−2, where not all z̃i’s are zero. �

Proposition 2.8. Q2 ∩ H :
∑4
i=1 εiaizi = 0, where A = (a1, a2, a3, a4)) is

timelike in C4
1, is a compact surface S of genus 0 whose Gauss curvature K

with respect to the indefinite Fubini-Study metric satisfies

maxK(p) = 2− 1
|k|4

minK(p) = 2− |k|2 ,

where k is given in Proposition 2.7.

Proof. We may assume H has the equation z1 − itz2 = 0, 0 ≤ t < 1. Then
H ∩ Q2 = H ∩ Q2

+. We already know that H ∩ Q2 is isometric to quadric

k (z2)
2

+ (z3)
2

+ (z4)
2

= 0 in CP 2. The Gauss curvature of S at any point
p = (z2, z3, z4) is given by the formula

K(p) = 2−
|k|2

(
|z2|2 + |z3|2 + |z4|2

)3
(|k|2|z2|2 + |z3|2 + |z4|2)

3

from which
maxK(p) = 2− 1

|k|4 ,

minK(p) = 2− |k|2 .

�
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