East Asian Math. J. Vol. 32 (2016), No. 1, pp. 093–100 http://dx.doi.org/10.7858/eamj.2016.010

ON THE INDEFINITE POSITIVE QUADRIC \mathbb{Q}^{n-2}_+

SEONG-KOWAN HONG

ABSTRACT. The generalized Gaussian image of a spacelike surface in L^n lies in the indefinite positive quadric \mathbb{Q}_+^{n-2} in the open submanifold $\mathbb{C}P_+^{n-1}$ of the complex projective space $\mathbb{C}P^{n-1}$. The purpose of this paper is to find out detailed information about $\mathbb{Q}_+^{n-2} \subset \mathbb{C}P_+^{n-1}$.

1. The Generalized Gauss Map

We begin with fixing our terminology and notation. Let $L^n = (\mathbb{R}^n, g)$ denote Lorentzian n-space with the flat Lorentzian metric g of index 1. Let M be a connected smooth orientable 2 manifold, and $X : M \longrightarrow L^n$ be a smooth imbedding of M into L^n . Throughout this paper, we assume that X is a space-like imbedding or M is a spacelike surface in L^n , that is, the pull back X^*g of the Lorentzian metric g via X is a positive definite metric on M.

Let $M = (M, \bar{g})$ be a spacelike surface in L^n with the induced metric $\bar{g} = X^*g$ so that $X : M \longrightarrow L^n$ is an isometric imbedding. By (u_1, u_2) we always denote isothermal coordinates compatible with the orientation on M. Then the metric \bar{g} is expressed locally as

$$\bar{g} = \lambda^2 ((du_1)^2 + (du_2)^2), \qquad \lambda > 0.$$
 (1)

It is well known that (u_1, u_2) is defined around each point of M, and we may regard M as a Riemann surface by introducing a complex local coordinate $z = u_1 + iu_2$.

We shall define the generalized Gauss map using local coordinates. Let M be a spacelike surface in L^n , or a Riemann surface. Locally, if u_1 and u_2 are isothermal parameters in a neighborhood of p on M, then M is defined near p by a map $X(z) = (x_1(z), \ldots, x_n(z)) \in L^n$, where $z = u_1 + iu_2$. Define the generalized Gauss map Ψ by

$$\Psi(z) = \frac{\partial X}{\partial u_1} + i \frac{\partial X}{\partial u_2} \ ,$$

Received January 22, 2016; Accepted January 28, 2016.

©2016 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

²⁰¹⁰ Mathematics Subject Classification. 53B30, 53C50.

Key words and phrases. spacelike surface, the generalized Gauss map, indefinite quadric. This work was supported by a 2-Year Research Grant of Pusan National University.

SEONG-KOWAN HONG

where $\Psi(z) \in \mathbb{C}P_+^{n-1} = \{(z_1, \ldots, z_n) \in \mathbb{C}P^{n-1} \mid -z_1\overline{z_1} + z_2\overline{z_2} + \cdots + z_n\overline{z_n} > 0\}$. Let us think of the effect of choosing another isothermal parameters $\tilde{u_1}, \tilde{u_2}$, and $\tilde{z} = \tilde{u_1} + i\tilde{u_2}$. Since the change of coordinates on a Riemann surface is analytic, we know that

$$\frac{\partial X}{\partial \tilde{u}_1} + i \frac{\partial X}{\partial \tilde{u}_2} = (\frac{\partial X}{\partial u_1} + i \frac{\partial X}{\partial u_2})(\frac{\partial u_1}{\partial \tilde{u}_1} - i \frac{\partial u_1}{\partial \tilde{u}_2}) \quad ,$$

which implies $\Psi(z) = \Psi(\tilde{z})$ in $\mathbb{C}P_+^{n-1}$. Since the pair of vectors $\frac{\partial X}{\partial u_1}$, $\frac{\partial X}{\partial u_2}$ are orthogonal and equal in length in L^n , it follows that

$$\frac{\partial X}{\partial u_1} + i \frac{\partial X}{\partial u_2} \in \mathbb{Q}^{n-2}_+$$

where $\mathbb{Q}^{n-2}_+ = \{(z_1, \ldots, z_n) \in \mathbb{C}P^{n-1}_+ \mid -z_1^2 + z_2^2 + \ldots + z_n^2 = 0\}$. Consequently, the generalized Gauss map Ψ is given locally by

$$(u_1, u_2) \longrightarrow \frac{\partial X}{\partial u_1} + i \frac{\partial X}{\partial u_2} \in \mathbb{Q}^{n-2}_+ \subset \mathbb{C}P^{n-1}_+$$
 (2)

We may represent the Gauss map locally by

$$\Psi(z) = (\overline{\phi_1}(z), \dots, \overline{\phi_n}(z))$$
,

where $\phi_k = 2 \frac{\partial x_k}{\partial z} = \frac{\partial x_k}{\partial u_1} - i \frac{\partial x_k}{\partial u_2}$. Denote (ϕ_1, \ldots, ϕ_n) by Φ . Then Ψ is holomorphic when Φ is antiholomorphic and Ψ is antiholomorphic when Φ is holomorphic. We will consider Φ as the generalized Gauss map instead of Ψ .

2. On the Indefinite Positive Quadric \mathbb{Q}^{n-2}_+

Note that the complex projective space $\mathbb{C}P^{n-1} = \mathbb{C}P_+^{n-1} \cup \mathbb{C}P_0^{n-1} \cup \mathbb{C}P_-^{n-1}$, where the generalized Gaussian image of a spacelike surface in L^n lies in the indefinite positive quadric \mathbb{Q}_+^{n-2} in $\mathbb{C}P_+^{n-1}$. The indefinite Fubini-Study metric on $\mathbb{C}P_+^{n-1}$ is given by

$$ds^{2} = 2 \frac{\sum_{j < k} \epsilon_{j} |z_{j} dz_{k} - z_{k} dz_{j}|^{2}}{(-z_{1}\overline{z_{1}} + z_{2}\overline{z_{2}} + \dots + z_{n}\overline{z_{n}})^{2}} , \qquad (3)$$

where $\epsilon_1 = -1$, and $\epsilon_j = 1$ otherwise.

Proposition 2.1. Let H be the hyperplane in $\mathbb{C}P^{n-1}$ $(n \geq 3)$ defined by

$$H: z_{n-1} - iz_n = 0 (4)$$

Then $(\mathbb{Q}^{n-2})^* = \mathbb{Q}^{n-2} \setminus H$ is biholomorphic to \mathbb{C}^{n-2} under the correspondence $(z_1, \cdots, z_n) = \alpha \left(2\xi_1, \cdots, 2\xi_{n-2}, 1-2\sum_{i=1}^{n-2} \epsilon_i(\xi_i)^2, i \left(1-2\sum_{i=1}^{n-2} \epsilon_i(\xi_i)^2 \right) \right),$ (5)

where $\alpha = \frac{z_{n-1}-iz_n}{2}$, and

$$\xi_1 = \frac{z_1}{z_{n-1} - iz_n}, \cdots, \xi_{n-2} = \frac{z_{n-2}}{z_{n-1} - iz_n} \quad . \tag{6}$$

Proof. Given any point $(z_1, \dots, z_n) \in (\mathbb{Q}^{n-2})^*$, if we define ξ_k by (6), then by the defining equation $-(z_1)^2 + (z_2)^2 + \dots + (z_n)^2 = 0$ of \mathbb{Q}^{n-2} ,

$$-(\xi_1)^2 + \dots + (\xi_{n-2})^2 = -\frac{z_{n-1} + iz_n}{z_{n-1} - iz_n}$$

Hence

$$z_{n-1} = \frac{(z_{n-1}-iz_n)+(z_{n-1}+iz_n)}{2} \\ = i\left(\frac{z_{n-1}-iz_n}{2}\right)\left(1-\sum_{j=1}^{n-2}\epsilon_j(\xi_j)^2\right) ,$$

and

$$z_n = i \frac{(z_{n-1} - iz_n) - (z_{n-1} + iz_n)}{2} \\= i \left(\frac{z_{n-1} - iz_n}{2}\right) \left(1 + \sum_{j=1}^{n-2} \epsilon_j (\xi_j)^2\right)$$

which yields (5).

Conversely, given any $(\xi_1, \cdots, \xi_{n-2}) \in \mathbb{C}^{n-2}$, setting

$$z_1 = 2\xi_1, \cdots, z_{n-2} = 2\xi_{n-2}, z_{n-1} = 1 - \sum_{j=1}^{n-2} \epsilon_j (\xi_j)^2, z_n = 1 + \sum_{j=1}^{n-2} \epsilon_j (\xi_j)^2 \quad (7)$$

gives a point $z = (z_1, \cdots, z_n) \in (\mathbb{Q}^{n-2})^*$.

Proposition 2.2. Let H be the hyperplane in $\mathbb{C}P^{n-1}$ $(n \ge 3)$ defined by

$$H: z_1 - z_2 = 0 . (8)$$

Then $(\mathbb{Q}^{n-2})^* = \mathbb{Q}^{n-2} \setminus H$ is biholomorphic to \mathbb{C}^{n-2} under the correspondence

$$(z_1, \cdots, z_n) = \frac{z_1 - z_2}{2} \left(\sum_{i=1}^{n-2} (\xi_i)^2 + 1, \sum_{i=1}^{n-2} (\xi_i)^2 - 1, 2\xi_1, \cdots, 2\xi_{n-2} \right), \quad (9)$$

where

$$\xi_1 = \frac{z_3}{z_1 - z_2}, \cdots, \xi_{n-2} = \frac{z_n}{z_1 - z_2} \quad . \tag{10}$$

Proof. Proof is exactly the same as the proof of the Proposition 2.1 except for the substitution (10).

Proposition 2.3. Suppose $A \in \mathbb{C}P^{n-1}$ $(n \geq 3)$ satisfies $\sum_{i=1}^{n} \epsilon_i |a_i|^2 < 0$. To such an A, we may assign a real number t lying in the interval $0 \leq t < 1$, with the following properties:

a) A is equivalent under the induced action of SO(1, n-1) in $\mathbb{C}P^{n-1}$ to $(i, -t, 0, \dots, 0) = (1, it, 0, \dots 0).$

b) t = 0 if and only if A is a real vector.

c) If t, s correspond to A, B, then A and B are equivalent if and only if t = s.

SEONG-KOWAN HONG

Proof. Consider first the case that A is a real vector. Since it is nonzero, we may write $A = \lambda R$ where $\lambda \in \mathbb{C}$ and R is a real unit timelike vector in L^n . Choose an oriented basis of L^n with $e_1 = R$. In the new basis, A takes the form $(1, 0, \dots, 0)$ up to a constant factor λ , which gives a) with t = 0.

Suppose next that A is not a real vector. If we write A = R + iS, then R and S must be linearly independent. We consider the effect of choosing different homogeneous coordinates for the point A. That amounts to multiplying through by a complex number $re^{i\theta}$, and the effect is to get a new pair of vectors T, U, where $T + iU = re^{i\theta}A$. A direct computation shows that

$$\begin{pmatrix} \langle T, U \rangle, \frac{\langle T, T \rangle - \langle U, U \rangle}{2} \end{pmatrix}$$

= $r^2 \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix} \left(\langle R, S \rangle, \frac{\langle R, R \rangle - \langle S, S \rangle}{2} \right)$

There is a unique value of $\theta(\mod \pi)$ such that $\langle T, U \rangle = 0$, and $\langle T, T \rangle - \langle U, U \rangle < 0$. Since $\langle T, T \rangle + \langle U, U \rangle < 0$, at least $\langle T, T \rangle < 0$. We may determine r uniquely so that $\langle T, T \rangle = -1$. Since L^n cannot have two orthogonal timelike vectors, U must be spacelike or lightlike. But since Theorem 1.1[4] tells us that lightlike vectors cannot be orthogonal to timelike vectors, U must be spacelike. Now we may define orthonormal vectors e_1, e_2 by the conditions $T = e_1, U = te_2$, where 0 < t < 1. Complete them into an oriented orthonoraml basis e_1, \cdots, e_n of L^n . Then the point A = T + iU has the coordinate $(1, it, 0, \cdots, 0) = (i, -t, 0, \cdots, 0)$. By combining the above arguments we prove a) and b). The value of t is given by $\sqrt{\langle U, U \rangle}$. Therefore the value is uniquely determined by the conditions that A = T + iU, where $\langle T, U \rangle = 0, \langle T, T \rangle = -1, \langle U, U \rangle > 0, \langle T, T \rangle < 0$. Thus the value of t is clearly SO(1, n-1)-invariant, and conversely if t = s, then there is $M \in SO(1, n-1)$ such that MA = B. This completes the proof.

Proposition 2.4. Suppose $A \in \mathbb{C}P^{n-1}$ $(n \geq 3)$ satisfies $\sum_{i=1}^{n} \epsilon_i |a_i|^2 > 0$. Under the induced action of SO(1, n-1) in $\mathbb{C}P^{n-1}$, A satisfies one of the following statements:

a) A is equivalent to $(0, 0, \dots, t, i), 0 \leq t \leq 1$, where t = 0 occurs only when A is real, and t = 1 only when $A \in \mathbb{Q}^{n-2}$.

b) A is equivalent to $(t, i, 0, \dots, 0), 0 \le t < 1$, where t = 0 occurs only when A is real.

c) A is equivalent to $(1, 1, \sqrt{2}i, 0, \cdots, 0)$.

Remark 1. The equivalence is unique in any case.

Proof. Consider first the case that A is a real vector. Since it is nonzero, we may write $A = \lambda R$, where $\lambda \in \mathbb{C}$ and R is a real unit spacelike vector in L^n . Choose an oriented basis of L^n with either $e_n = R$ or $e_2 = R$. In the new basis, A takes the form either $(0, 0, \dots, 0, 1)$ or $(0, 1, 0, \dots, 0)$ which gives the case t = 0. Suppose next that A is not a real vector. If we denote A = R + iS, then R and S must be linearly independent. If $\langle R, S \rangle = 0$, and $\langle R, R \rangle - \langle S, S \rangle = 0$, then $A \in \mathbb{Q}^{n-2}$ and A is equivalent to $(0, \dots, 0, 1, i)$ by

taking an orthonormal basis of L^n with $R = e_{n-1}$, $S = e_n$. In the opposite case, let $T + iU = re^{i\theta}(R+iS)$. Then we can find a unique value of $\theta(\mod \pi)$ such that $\langle T, U \rangle = 0$, $\langle T, T \rangle - \langle U, U \rangle < 0$. Since $\langle T, T \rangle + \langle U, U \rangle > 0$, U must be spacelike. Here we are excluding the case T = O since A is assumed to be not a real vector. We may determine r uniquely so that $\langle U, U \rangle = 1$. Tmay be (nonzero) spacelike, timelike or lightlike. If T is spacelike, define the orthonormal vectors e_{n-1} , e_n by $T = te_{n-1}$, $U = e_n$, where 0 < t < 1. If Tis timelike, define the orthonormal vectors e_1 , e_2 by $T = te_1$, $U = e_2$, where 0 < t < 1. In either case, completing them to an oriented orthonormal basis e_1, \dots, e_n of L^n , the point A = T + iU has the coordinates $(0, 0, \dots, t, i)$ or $(t, i, 0, \dots, 0)$ where 0 < t < 1. If T is lightlike, we can find out another lightlike vector \tilde{T} such that $\langle T, \tilde{T} \rangle = 1$ and $\langle U, \tilde{T} \rangle = 0$. Define

$$e_1 = \frac{T - \tilde{T}}{\sqrt{2}}, \quad e_2 = \frac{T + \tilde{T}}{\sqrt{2}}, \quad e_3 = U$$

Complete them into an oriented orthonormal basis e_1, \dots, e_n of L^n . Then the point A has the coordinate $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1, 0, \dots, 0\right)$. Since T is SO(1, n - 1)invariant in any case, the final statement is also true.

Proposition 2.5. Suppose $A \in \mathbb{C}P^{n-1}$ $(n \geq 3)$ satisfies $\sum_{i=1}^{n} \epsilon_i |a_i|^2 = 0$. Then A is equivalent to $(1, i, 0, \dots, 0)$, or $(1, 1, 0, \dots, 0)$, under the induced SO(1, n-1)-action in $\mathbb{C}P^{n-1}$.

Proof. If A is real, then $A = \lambda R$ for some $\lambda \in \mathbb{C}$ and lightlike vector $R \in L^n$. Since there is another lightlike vector \tilde{R} such that $\langle R, \tilde{R} \rangle = 1$, by putting

$$e_1 = \frac{R - \tilde{R}}{\sqrt{2}}, \quad e_2 = \frac{R + \tilde{R}}{\sqrt{2}},$$

A has the coordinate $(1, 1, 0, \dots, 0)$ in $\mathbb{C}P^{n-1}$. Note that R and \tilde{R} are linearly independent. If A is not real, then there are two linearly independent vectors R, S in L^n such that A = R + iS. Note that $\langle R, S \rangle \neq 0$.By multiplying suitable complex number to A we can make A = T + iU, where $\langle T, U \rangle = 0$, $\langle T, T \rangle < \langle U, U \rangle$, $\langle U, U \rangle = 1$. Since $\langle T, T \rangle + \langle U, U \rangle = 0$, $\langle T, T \rangle = -1$. Then with $T = e_1, U = e_2, A$ has the coordinate $(1, i, 0, \dots, 0)$.

Let H be a hyperplane in $\mathbb{C}P^{n-1}$ defined by an equation $\sum \epsilon_i a_i z_i = 0$, $A = (a_1, \dots, a_n) \in \mathbb{C}_1^n$. Since $\sum \epsilon_i c a_i z_i = 0$ defines the same hyperplane, we may consider $A \in \mathbb{C}P^{n-1}$. Let $M \in SO(1, n-1)$ and $\tilde{Z} = MZ$. Then the equation $\sum \epsilon_i a_i z_i = 0$ is transformed into $\sum \epsilon_i \tilde{a}_i \tilde{z}_i = 0$ using the new coordinate \tilde{Z} , where $\tilde{A} = MA$.

Combining this observation with Proposition 2.3, 2.4, and 2.5, we may get the following proposition. **Proposition 2.6.** Let H be a hyperplane in $\mathbb{C}P^{n-1}(n \ge 3)$ defined by an equation $\sum \epsilon_i a_i z_i = 0$. Then H is uniquely determined as one of the following :

a) If A is a spacelike vector in \mathbb{C}_1^n , then there exists $M \in SO(1, n-1)$ such that if we set $\tilde{Z} = MZ$, then H is transformed to $cz_{n-1} - \tilde{z_n} = 0$ for some $c \in \mathbb{C}$ of the form c = it, $0 \leq t \leq 1$, $c\tilde{z_1} - \tilde{z_2} = 0$ for some $c \in \mathbb{C}$ of the form c = it, $0 \leq t < 1$, $cr_1 - \tilde{z_2} = 0$ for some $c \in \mathbb{C}$ of the form c = it, $0 \leq t < 1$, $cr_1 + \tilde{z_2} + \sqrt{2}i\tilde{z_3} = 0$;

b) If A is a timelike vector in \mathbb{C}_1^n , then there exists $M \in SO(1, n-1)$ such that if we set $\tilde{Z} = MZ$, then H is transformed to $\tilde{z_1} - c\tilde{z_2} = 0$ for some $c \in \mathbb{C}$ of the form $c = it, 0 \leq t < 1$;

c) If A is a lightlike vector in \mathbb{C}_1^n , then there exists $M \in SO(1, n-1)$ such that if we set $\tilde{Z} = MZ$, then H is transformed to $\tilde{z_1} - \tilde{z_2} = 0$ or $\tilde{z_1} - \tilde{z_2} = 0$.

Proof. Use the transformation of a hyperplane by the SO(1, n - 1)-action.

Remark 2. Combining the above proposition together with proposition 1 and 2, we get the following fact: Let H be a tangent hyperplane to \mathbb{Q}^{n-2} . Then $(\mathbb{Q}^{n-2})^* = \mathbb{Q}^{n-2} \setminus H$ is biholomorphic to \mathbb{C}^{n-2} since H is transformed into either $z_{n-1} - iz_n = 0$ or $z_1 - z_2 = 0$ under a suitable change of coordinates in L^n .

Proposition 2.7. Let H be a hyperplane in $\mathbb{C}P^{n-1}$ ($n \geq 3$) defined by an equation $\sum \epsilon_i a_i z_i = 0$, where $A = (a_1, \dots, c_n)$ is a timelike vector in \mathbb{C}_1^n . Then $H \cap \mathbb{Q}^{n-2}$ is isometric to the quadric defined by $(kz_2)^2 + (z_3)^2 + \dots + (z_n)^2 = 0$ in $\mathbb{C}P^{n-2}$, where $k = \frac{1-c^2}{1-|c|^2}$, c = it, $0 \leq t < 1$.

Proof. Since $\partial \overline{\partial} \log (\sum \epsilon_i z_i \overline{z_i})$ is invariant under the action of SO(1, n - 1) on $\mathbb{C}P_+^{n-1}$, and the action of SO(1, n - 1) on \mathbb{Q}_+^{n-2} is an isometry, we may, by proposition 6, assume H is given by

$$z_1 - cz_2 = 0, \quad c = it, \quad 0 \le t < 1$$

Note that $H \cap \mathbb{Q}^{n-2} = H \cap \mathbb{Q}^{n-2}_+$. Let $d = \sqrt{1 - |c|^2}$, and put

$$\begin{aligned} \tilde{z}_1 &= \frac{1}{d} \left(z_1 - c z_2 \right) &, \\ \tilde{z}_2 &= \frac{1}{d} \left(\bar{c} z_1 - z_2 \right) &, \\ \tilde{z}_3 &= z_3, \cdots, \tilde{z}_n = z_n \end{aligned}$$

The transformation from Z to \tilde{Z} is in U(1, n-1), that is, an isometry in the indefinite Fubini-Study metric on $\mathbb{C}P^{n-1}_+$. From its converse,

$$\begin{aligned} z_1 &= \frac{1}{d} \left(\tilde{z}_1 - c \tilde{z}_2 \right) &, \\ z_2 &= \frac{1}{d} \left(\bar{c} \tilde{z}_1 - \tilde{z}_2 \right) &, \\ z_3 &= \tilde{z}_3, \cdots, z_n = \tilde{z_n} \end{aligned}$$

Since the hyperplane H has the equation $\tilde{z_1}$ in the new coordinate system, it follows that $\mathbb{Q}^{n-2}_+ \cap H$ satisfies

$$\begin{aligned} &\widetilde{z}_1 = 0 \quad , \\ & \left(\frac{1-c^2}{d^2}\right) \widetilde{z}_2^{\ 2} + \widetilde{z}_3^{\ 2} + \dots + \widetilde{z_n}^2 = 0 \\ & |\widetilde{z}_2|^2 + \dots + |\widetilde{z_n}|^2 > 0 \quad . \end{aligned}$$

But the restriction of the indefinite Fubini-Study metric on $\mathbb{C}P^{n-1}_+$ to the hyperplane $\tilde{z}_1 = 0$ is just the usual Fubini-Study metric on $\mathbb{C}P^{n-2}$. Hence $\mathbb{Q}^{n-2} \cap H$ is isometric to the quadric

$$k(\tilde{z}_{2})^{2} + (\tilde{z}_{3})^{2} + \dots + (\tilde{z}_{n})^{2} = 0$$

in $\mathbb{C}P^{n-2}$, where not all \widetilde{z}_i 's are zero.

Proposition 2.8. $\mathbb{Q}^2 \cap H : \sum_{i=1}^4 \epsilon_i a_i z_i = 0$, where $A = (a_1, a_2, a_3, a_4)$) is timelike in \mathbb{C}_1^4 , is a compact surface S of genus 0 whose Gauss curvature K with respect to the indefinite Fubini-Study metric satisfies

$$maxK(p) = 2 - \frac{1}{|k|^4} minK(p) = 2 - |k|^2$$

where k is given in Proposition 2.7.

Proof. We may assume H has the equation $z_1 - itz_2 = 0$, $0 \le t < 1$. Then $H \cap \mathbb{Q}^2 = H \cap \mathbb{Q}^2_+$. We already know that $H \cap \mathbb{Q}^2$ is isometric to quadric $k(z_2)^2 + (z_3)^2 + (z_4)^2 = 0$ in $\mathbb{C}P^2$. The Gauss curvature of S at any point $p = (z_2, z_3, z_4)$ is given by the formula

$$K(p) = 2 - \frac{|k|^2 (|z_2|^2 + |z_3|^2 + |z_4|^2)^3}{(|k|^2 |z_2|^2 + |z_3|^2 + |z_4|^2)^3}$$

from which

$$maxK(p) = 2 - \frac{1}{|k|^4} minK(p) = 2 - |k|^2$$

References

- Abe, K. and Magid, M., Indefinite Rigidity of Complex Submanifold and Maximal Surfaces, Mathematical Proceedings 106 (1989), no. 3, 481–494
- [2] Akutagawa, K. and Nishigawa, S., The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space, Tohoku Mathematical Journal 42 (1990), no. 1, 67–82.
- [3] Asperti, Antonio C. and Vilhena, Jose Antonio M., Spacelike Surfaces in L⁴ with Degenerate Gauss Map, Results in Mathematics 60 (2011), no. 1, 185–211.
- [4] Graves, L., Codimension One Isometric Immersions between Lorentz Spaces, Ph.D. Thesis, Brown University, 1977.
- [5] Kobayasi, O., Maximal Surfaces in the 3-dimensional Minkowski Space L³, Tokyo J. Math. 6 (1983), 297–309.

 \square

SEONG-KOWAN HONG

- Milnor, T. K., Harmonic Maps and Classical Surface Theory in Minkowski 3-space, Trans. of AMS 280 (1983), 161–185.
- [7] O'Neil, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [8] Osserman, R., A Survey of Minimal Surfaces, Dover, New York, 1986

SEONG-KOWAN HONG

DEPARTMENT OF MATHEMATICS EDUCATION, PUSAN NATIONAL UNIVERSITY, BUSAN, 609-735, REPUBLIC OF KOREA

 $E\text{-}mail\ address: \texttt{aromhong@hanafos.com}$

100