East Asian Math. J.
Vol. 32 (2016), No. 1, pp. 093-100
http://dx.doi.org/10.7858/eamj.2016.010

ON THE INDEFINITE POSITIVE QUADRIC \mathbb{Q}_{+}^{n-2}

Seong-Kowan Hong

Abstract

The generalized Gaussian image of a spacelike surface in L^{n} lies in the indefinite positive quadric \mathbb{Q}_{+}^{n-2} in the open submanifold $\mathbb{C} P_{+}^{n-1}$ of the complex projective space $\mathbb{C} P^{n-1}$. The purpose of this paper is to find out detailed information about $\mathbb{Q}_{+}^{n-2} \subset \mathbb{C} P_{+}^{n-1}$.

1. The Generalized Gauss Map

We begin with fixing our terminology and notation. Let $L^{n}=\left(R^{n}, g\right)$ denote Lorentzian n -space with the flat Lorentzian metric g of index 1 . Let M be a connected smooth orientable 2 manifold, and $X: M \longrightarrow L^{n}$ be a smooth imbedding of M into L^{n}. Throughout this paper, we assume that X is a spacelike imbedding or M is a spacelike surface in L^{n}, that is, the pull back $X^{*} g$ of the Lorentzian metric g via X is a positive definite metric on M.

Let $M=(M, \bar{g})$ be a spacelike surface in L^{n} with the induced metric $\bar{g}=X^{*} g$ so that $X: M \longrightarrow L^{n}$ is an isometric imbedding. By $\left(u_{1}, u_{2}\right)$ we always denote isothermal coordinates compatible with the orientation on M. Then the metric \bar{g} is expressed locally as

$$
\begin{equation*}
\bar{g}=\lambda^{2}\left(\left(d u_{1}\right)^{2}+\left(d u_{2}\right)^{2}\right), \quad \lambda>0 . \tag{1}
\end{equation*}
$$

It is well known that $\left(u_{1}, u_{2}\right)$ is defined around each point of M, and we may regard M as a Riemann surface by introducing a complex local coordinate $z=u_{1}+i u_{2}$.

We shall define the generalized Gauss map using local coordinates. Let M be a spacelike surface in L^{n}, or a Riemann surface. Locally, if u_{1} and u_{2} are isothermal parameters in a neighborhood of p on M, then M is defined near p by a map $X(z)=\left(x_{1}(z), \ldots, x_{n}(z)\right) \in L^{n}$, where $z=u_{1}+i u_{2}$. Define the generalized Gauss map Ψ by

$$
\Psi(z)=\frac{\partial X}{\partial u_{1}}+i \frac{\partial X}{\partial u_{2}},
$$

Received January 22, 2016; Accepted January 28, 2016.
2010 Mathematics Subject Classification. 53B30, 53C50.
Key words and phrases. spacelike surface, the generalized Gauss map, indefinite quadric. This work was supported by a 2 -Year Research Grant of Pusan National University.
where $\Psi(z) \in \mathbb{C} P_{+}^{n-1}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C} P^{n-1} \mid-z_{1} \overline{z_{1}}+z_{2} \overline{z_{2}}+\cdots+z_{n} \overline{z_{n}}>0\right\}$. Let us think of the effect of choosing another isothermal parameters $\tilde{u_{1}}, \tilde{u_{2}}$, and $\tilde{z}=\tilde{u_{1}}+i \tilde{u_{2}}$. Since the change of coordinates on a Riemann surface is analytic, we know that

$$
\frac{\partial X}{\partial \tilde{u}_{1}}+i \frac{\partial X}{\partial \tilde{u}_{2}}=\left(\frac{\partial X}{\partial u_{1}}+i \frac{\partial X}{\partial u_{2}}\right)\left(\frac{\partial u_{1}}{\partial \tilde{u}_{1}}-i \frac{\partial u_{1}}{\partial \tilde{u}_{2}}\right)
$$

which implies $\Psi(z)=\Psi(\tilde{z})$ in $\mathbb{C} P_{+}^{n-1}$. Since the pair of vectors $\frac{\partial X}{\partial u_{1}}, \frac{\partial X}{\partial u_{2}}$ are orthogonal and equal in length in L^{n}, it follows that

$$
\frac{\partial X}{\partial u_{1}}+i \frac{\partial X}{\partial u_{2}} \in \mathbb{Q}_{+}^{n-2}
$$

where $\mathbb{Q}_{+}^{n-2}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C} P_{+}^{n-1} \mid-z_{1}^{2}+z_{2}^{2}+\ldots+z_{n}^{2}=0\right\}$. Consequently, the generalized Gauss map Ψ is given locally by

$$
\begin{equation*}
\left(u_{1}, u_{2}\right) \longrightarrow \frac{\partial X}{\partial u_{1}}+i \frac{\partial X}{\partial u_{2}} \in \mathbb{Q}_{+}^{n-2} \subset \mathbb{C} P_{+}^{n-1} \tag{2}
\end{equation*}
$$

We may represent the Gauss map locally by

$$
\Psi(z)=\left(\overline{\phi_{1}}(z), \ldots, \overline{\phi_{n}}(z)\right)
$$

where $\phi_{k}=2 \frac{\partial x_{k}}{\partial z}=\frac{\partial x_{k}}{\partial u_{1}}-i \frac{\partial x_{k}}{\partial u_{2}}$. Denote $\left(\phi_{1}, \ldots, \phi_{n}\right)$ by Φ. Then Ψ is holomorphic when Φ is antiholomorphic and Ψ is antiholomorphic when Φ is holomorphic. We will consider Φ as the generalized Gauss map instead of Ψ.

2. On the Indefinite Positive Quadric \mathbb{Q}_{+}^{n-2}

Note that the complex projective space $\mathbb{C} P^{n-1}=\mathbb{C} P_{+}^{n-1} \cup \mathbb{C} P_{0}^{n-1} \cup \mathbb{C} P_{-}^{n-1}$, where the generalized Gaussian image of a spacelike surface in L^{n} lies in the indefinite positive quadric \mathbb{Q}_{+}^{n-2} in $\mathbb{C} P_{+}^{n-1}$. The indefinite Fubini-Study metric on $\mathbb{C} P_{+}^{n-1}$ is given by

$$
\begin{equation*}
d s^{2}=2 \frac{\sum_{j<k} \epsilon_{j}\left|z_{j} d z_{k}-z_{k} d z_{j}\right|^{2}}{\left(-z_{1} \overline{z_{1}}+z_{2} \overline{z_{2}}+\cdots z_{n} \overline{z_{n}}\right)^{2}} \tag{3}
\end{equation*}
$$

where $\epsilon_{1}=-1$, and $\epsilon_{j}=1$ otherwise.
Proposition 2.1. Let H be the hyperplane in $\mathbb{C} P^{n-1}(n \geq 3)$ defined by

$$
\begin{equation*}
H: z_{n-1}-i z_{n}=0 \tag{4}
\end{equation*}
$$

Then $\left(\mathbb{Q}^{n-2}\right)^{*}=\mathbb{Q}^{n-2} \backslash H$ is biholomorphic to \mathbb{C}^{n-2} under the correspondence

$$
\begin{equation*}
\left(z_{1}, \cdots, z_{n}\right)=\alpha\left(2 \xi_{1}, \cdots, 2 \xi_{n-2}, 1-2 \sum_{i=1}^{n-2} \epsilon_{i}\left(\xi_{i}\right)^{2}, i\left(1-2 \sum_{i=1}^{n-2} \epsilon_{i}\left(\xi_{i}\right)^{2}\right)\right) \tag{5}
\end{equation*}
$$

where $\alpha=\frac{z_{n-1}-i z_{n}}{2}$, and

$$
\begin{equation*}
\xi_{1}=\frac{z_{1}}{z_{n-1}-i z_{n}}, \cdots, \xi_{n-2}=\frac{z_{n-2}}{z_{n-1}-i z_{n}} . \tag{6}
\end{equation*}
$$

Proof. Given any point $\left(z_{1}, \cdots, z_{n}\right) \in\left(\mathbb{Q}^{n-2}\right)^{*}$, if we define ξ_{k} by (6), then by the defining equation $-\left(z_{1}\right)^{2}+\left(z_{2}\right)^{2}+\cdots+\left(z_{n}\right)^{2}=0$ of \mathbb{Q}^{n-2},

$$
-\left(\xi_{1}\right)^{2}+\cdots+\left(\xi_{n-2}\right)^{2}=-\frac{z_{n-1}+i z_{n}}{z_{n-1}-i z_{n}}
$$

Hence

$$
\begin{aligned}
z_{n-1} & =\frac{\left(z_{n-1}-i z_{n}\right)+\left(z_{n-1}+i z_{n}\right)}{2} \\
& =i\left(\frac{z_{n-1}-i z_{n}}{2}\right)\left(1-\sum_{j=1}^{n-2} \epsilon_{j}\left(\xi_{j}\right)^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
z_{n} & =i \frac{\left(z_{n-1}-i z_{n}\right)-\left(z_{n-1}+i z_{n}\right)}{2} \\
& =i\left(\frac{z_{n-1}-i z_{n}}{2}\right)\left(1+\sum_{j=1}^{n-2} \epsilon_{j}\left(\xi_{j}\right)^{2}\right)
\end{aligned}
$$

which yields (5).
Conversely, given any $\left(\xi_{1}, \cdots, \xi_{n-2}\right) \in \mathbb{C}^{n-2}$, setting

$$
\begin{equation*}
z_{1}=2 \xi_{1}, \cdots, z_{n-2}=2 \xi_{n-2}, z_{n-1}=1-\sum_{j=1}^{n-2} \epsilon_{j}\left(\xi_{j}\right)^{2}, z_{n}=1+\sum_{j=1}^{n-2} \epsilon_{j}\left(\xi_{j}\right)^{2} \tag{7}
\end{equation*}
$$

gives a point $z=\left(z_{1}, \cdots, z_{n}\right) \in\left(\mathbb{Q}^{n-2}\right)^{*}$.

Proposition 2.2. Let H be the hyperplane in $\mathbb{C} P^{n-1}(n \geq 3)$ defined by

$$
\begin{equation*}
H: z_{1}-z_{2}=0 \tag{8}
\end{equation*}
$$

Then $\left(\mathbb{Q}^{n-2}\right)^{*}=\mathbb{Q}^{n-2} \backslash H$ is biholomorphic to \mathbb{C}^{n-2} under the correspondence

$$
\begin{equation*}
\left(z_{1}, \cdots, z_{n}\right)=\frac{z_{1}-z_{2}}{2}\left(\sum_{i=1}^{n-2}\left(\xi_{i}\right)^{2}+1, \sum_{i=1}^{n-2}\left(\xi_{i}\right)^{2}-1,2 \xi_{1}, \cdots, 2 \xi_{n-2}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{1}=\frac{z_{3}}{z_{1}-z_{2}}, \cdots, \xi_{n-2}=\frac{z_{n}}{z_{1}-z_{2}} . \tag{10}
\end{equation*}
$$

Proof. Proof is exactly the same as the proof of the Proposition 2.1 except for the substitution (10).

Proposition 2.3. Suppose $A \in \mathbb{C} P^{n-1}(n \geq 3)$ satisfies $\sum_{i=1}^{n} \epsilon_{i}\left|a_{i}\right|^{2}<0$. To such an A, we may assign a real number t lying in the interval $0 \leq t<1$, with the following properties:
a) A is equivalent under the induced action of $S O(1, n-1)$ in $\mathbb{C} P^{n-1}$ to $(i,-t, 0, \cdots, 0)=(1, i t, 0, \cdots 0)$.
b) $t=0$ if and only if A is a real vector.
c) If t, s correspond to A, B, then A and B are equivalent if and only if $t=s$.

Proof. Consider first the case that A is a real vector. Since it is nonzero, we may write $A=\lambda R$ where $\lambda \in \mathbb{C}$ and R is a real unit timelike vector in L^{n}. Choose an oriented basis of L^{n} with $e_{1}=R$. In the new basis, A takes the form $(1,0, \cdots, 0)$ up to a constant factor λ, which gives a) with $t=0$.

Suppose next that A is not a real vector. If we write $A=R+i S$, then R and S must be linearly independent.We consider the effect of choosing different homogeneous coordinates for the point A. That amounts to multiplying through by a complex number $r e^{i \theta}$, and the effect is to get a new pair of vectors T, U, where $T+i U=r e^{i \theta} A$. A direct computation shows that

$$
\begin{aligned}
& \left(\langle T, U\rangle, \frac{\langle T, T\rangle-\langle U, U\rangle}{2}\right) \\
& =r^{2}\left[\begin{array}{ll}
\cos 2 \theta & \sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta
\end{array}\right]\left(\langle R, S\rangle, \frac{\langle R, R\rangle-\langle S, S\rangle}{2}\right) .
\end{aligned}
$$

There is a unique value of $\theta(\bmod \pi)$ such that $\langle T, U\rangle=0$, and $\langle T, T\rangle-\langle U, U\rangle<$ 0 . Since $\langle T, T\rangle+\langle U, U\rangle<0$, at least $\langle T, T\rangle<0$. We may determine r uniquely so that $\langle T, T\rangle=-1$. Since L^{n} cannot have two orthogonal timelike vectors, U must be spacelike or lightlike. But since Theorem 1.1[4] tells us that lightlike vectors cannot be orthogonal to timelike vectors, U must be spacelike. Now we may define orthonormal vectors e_{1}, e_{2} by the conditions $T=e_{1}, U=t e_{2}$, where $0<t<1$. Complete them into an oriented orthonoraml basis e_{1}, \cdots, e_{n} of L^{n}. Then the point $A=T+i U$ has the coordinate $(1, i t, 0, \cdots, 0)=(i,-t, 0, \cdots, 0)$. By combining the above arguments we prove a) and b). The value of t is given by $\sqrt{\langle U, U\rangle}$. Therefore the value is uniquely determined by the conditions that $A=T+i U$, where $\langle T, U\rangle=0,\langle T, T\rangle=-1,\langle U, U\rangle>0,\langle T, T\rangle<0$.Thus the value of t is clearly $S O(1, n-1)$-invariant, and conversely if $t=s$, then there is $M \in S O(1, n-1)$ such that $M A=B$. This completes the proof.

Proposition 2.4. Suppose $A \in \mathbb{C} P^{n-1}(n \geq 3)$ satisfies $\sum_{i=1}^{n} \epsilon_{i}\left|a_{i}\right|^{2}>0$. Under the induced action of $S O(1, n-1)$ in $\mathbb{C} P^{n-1}$, A satisfies one of the following statements:
a) A is equivalent to $(0,0, \cdots, t, i), 0 \leq t \leq 1$, where $t=0$ occurs only when A is real, and $t=1$ only when $A \in \mathbb{Q}^{n-2}$.
b) A is equivalent to $(t, i, 0, \cdots, 0), 0 \leq t<1$, where $t=0$ occurs only when A is real.
c) A is equivalent to $(1,1, \sqrt{2} i, 0, \cdots, 0)$.

Remark 1. The equivalence is unique in any case.
Proof. Consider first the case that A is a real vector. Since it is nonzero, we may write $A=\lambda R$, where $\lambda \in \mathbb{C}$ and R is a real unit spacelike vector in L^{n}. Choose an oriented basis of L^{n} with either $e_{n}=R$ or $e_{2}=R$. In the new basis, A takes the form either $(0,0, \cdots, 0,1)$ or $(0,1,0, \cdots, 0)$ which gives the case $t=0$. Suppose next that A is not a real vector. If we denote $A=R+i S$, then R and S must be linearly independent. If $\langle R, S\rangle=0$, and $\langle R, R\rangle-\langle S, S\rangle=0$, then $A \in \mathbb{Q}^{n-2}$ and A is equivalent to $(0, \cdots, 0,1, i)$ by
taking an orthonormal basis of L^{n} with $R=e_{n-1}, S=e_{n}$. In the opposite case, let $T+i U=r e^{i \theta}(R+i S)$. Then we can find a unique value of $\theta(\bmod \pi)$ such that $\langle T, U\rangle=0,\langle T, T\rangle-\langle U, U\rangle<0$. Since $\langle T, T\rangle+\langle U, U\rangle>0, U$ must be spacelike. Here we are excluding the case $T=O$ since A is assumed to be not a real vector. We may determine r uniquely so that $\langle U, U\rangle=1 . T$ may be (nonzero) spacelike, timelike or lightlike. IfT is spacelike, define the orthonormal vectors e_{n-1}, e_{n} by $T=t e_{n-1}, U=e_{n}$, where $0<t<1$. If T is timelike, define the orthonormal vectors e_{1}, e_{2} by $T=t e_{1}, U=e_{2}$, where $0<t<1$. In either case, completing them to an oriented orthonormal basis e_{1}, \cdots, e_{n} of L^{n}, the point $A=T+i U$ has the coordinates $(0,0, \cdots, t, i)$ or $(t, i, 0, \cdots, 0)$ where $0<t<1$. If T is lightlike, we can find out another lightlike vector \tilde{T} such that $\langle T, \tilde{T}\rangle=1$ and $\langle U, \tilde{T}\rangle=0$. Define

$$
e_{1}=\frac{T-\tilde{T}}{\sqrt{2}}, \quad e_{2}=\frac{T+\tilde{T}}{\sqrt{2}}, \quad e_{3}=U
$$

Complete them into an oriented orthonormal basis e_{1}, \cdots, e_{n} of L^{n}. Then the point A has the coordinate $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1,0, \cdots, 0\right)$. Since T is $S O(1, n-1)$ invariant in any case, the final statement is also true.

Proposition 2.5. Suppose $A \in \mathbb{C} P^{n-1}(n \geq 3)$ satisfies $\sum_{i=1}^{n} \epsilon_{i}\left|a_{i}\right|^{2}=0$. Then A is equivalent to $(1, i, 0, \cdots, 0)$, or $(1,1,0, \cdots, 0)$, under the induced $S O(1, n-$ $1)$-action in $\mathbb{C} P^{n-1}$.

Proof. If A is real, then $A=\lambda R$ for some $\lambda \in \mathbb{C}$ and lightlike vector $R \in L^{n}$. Since there is another lightlike vector \tilde{R} such that $\langle R, \tilde{R}\rangle=1$, by putting

$$
e_{1}=\frac{R-\tilde{R}}{\sqrt{2}}, \quad e_{2}=\frac{R+\tilde{R}}{\sqrt{2}},
$$

A has the coordinate $(1,1,0, \cdots, 0)$ in $\mathbb{C} P^{n-1}$. Note that R and \tilde{R} are linearly independent. If A is not real, then there are two linearly independent vectors R, S in L^{n} such that $A=R+i S$. Note that $\langle R, S\rangle \neq 0$.By multiplying suitable complex number to A we can make $A=T+i U$, where $\langle T, U\rangle=0$, $\langle T, T\rangle<\langle U, U\rangle,\langle U, U\rangle=1$. Since $\langle T, T\rangle+\langle U, U\rangle=0,\langle T, T\rangle=-1$. Then with $T=e_{1}, U=e_{2}, A$ has the coordinate ($1, i, 0, \cdots, 0$).

Let H be a hyperplane in $\mathbb{C} P^{n-1}$ defined by an equation $\sum \epsilon_{i} a_{i} z_{i}=0$, $A=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{C}_{1}^{n}$. Since $\sum \epsilon_{i} c a_{i} z_{i}=0$ defines the same hyperplane, we may consider $A \in \mathbb{C} P^{n-1}$. Let $M \in S O(1, n-1)$ and $\tilde{Z}=M Z$. Then the equation $\sum \epsilon_{i} a_{i} z_{i}=0$ is transformed into $\sum \epsilon_{i} \tilde{a_{i}} \tilde{z_{i}}=0$ using the new coordinate \tilde{Z}, where $\tilde{A}=M A$.

Combining this observation with Proposition 2.3, 2.4, and 2.5, we may get the following proposition.

Proposition 2.6. Let H be a hyperplane in $\mathbb{C} P^{n-1}(n \geq 3)$ defined by an equation $\sum \epsilon_{i} a_{i} z_{i}=0$. Then H is uniquely determined as one of the following :
a) If A is a spacelike vector in \mathbb{C}_{1}^{n}, then there exists $M \in S O(1, n-1)$ such that if we set $\tilde{Z}=M Z$, then H is transformed to $c z_{n-1}-\tilde{z_{n}}=0$ for some $c \in \mathbb{C}$ of the form $c=i t, 0 \leq t \leq 1, c \tilde{z_{1}}-\tilde{z_{2}}=0$ for some $c \in \mathbb{C}$ of the form $c=i t$, $0 \leq t<1$, or $-\tilde{z_{1}}+\tilde{z_{2}}+\sqrt{2} i \tilde{z_{3}}=0$;
b) If A is a timelike vector in \mathbb{C}_{1}^{n}, then there exists $M \in S O(1, n-1)$ such that if we set $\tilde{Z}=M Z$, then H is transformed to $\tilde{z_{1}}-c \tilde{z_{2}}=0$ for some $c \in \mathbb{C}$ of the form $c=i t, 0 \leq t<1$;
c) If A is a lightlike vector in \mathbb{C}_{1}^{n}, then there exists $M \in S O(1, n-1)$ such that if we set $\tilde{Z}=M Z$, then H is transformed to $\tilde{z_{1}}-i \tilde{z_{2}}=0$ or $\tilde{z_{1}}-\tilde{z_{2}}=0$.

Proof. Use the transformation of a hyperplane by the $S O(1, n-1)$-action.

Remark 2. Combining the above proposition together with proposition 1 and 2 , we get the following fact: Let H be a tangent hyperplane to \mathbb{Q}^{n-2}. Then $\left(\mathbb{Q}^{n-2}\right)^{*}=\mathbb{Q}^{n-2} \backslash H$ is biholomorphic to \mathbb{C}^{n-2} since H is transformed into either $z_{n-1}-i z_{n}=0$ or $z_{1}-z_{2}=0$ under a suitable change of coordinates in L^{n}.

Proposition 2.7. Let H be a hyperplane in $\mathbb{C} P^{n-1}(n \geq 3)$ defined by an equation $\sum \epsilon_{i} a_{i} z_{i}=0$, where $A=\left(a_{1}, \cdots, c_{n}\right)$ is a timelike vector in \mathbb{C}_{1}^{n}. Then $H \cap \mathbb{Q}^{n-2}$ is isometric to the quadric defined by $\left(k z_{2}\right)^{2}+\left(z_{3}\right)^{2}+\cdots+\left(z_{n}\right)^{2}=0$ in $\mathbb{C} P^{n-2}$, where $k=\frac{1-c^{2}}{1-|c|^{2}}, c=i t, 0 \leq t<1$.

Proof. Since $\partial \bar{\partial} \log \left(\sum \epsilon_{i} z_{i} \overline{z_{i}}\right)$ is invariant under the action of $S O(1, n-1)$ on $\mathbb{C} P_{+}^{n-1}$, and the action of $S O(1, n-1)$ on \mathbb{Q}_{+}^{n-2} is an isometry, we may, by proposition 6 , assume H is given by

$$
z_{1}-c z_{2}=0, \quad c=i t, \quad 0 \leq t<1 .
$$

Note that $H \cap \mathbb{Q}^{n-2}=H \cap \mathbb{Q}_{+}^{n-2}$. Let $d=\sqrt{1-|c|^{2}}$, and put

$$
\begin{aligned}
& \tilde{z}_{1}=\frac{1}{d}\left(z_{1}-c z_{2}\right) \\
& \tilde{z}_{2}=\frac{1}{d}\left(\bar{c} z_{1}-z_{2}\right), \\
& \tilde{z}_{3}=z_{3}, \cdots, \tilde{z}_{n}=z_{n} .
\end{aligned}
$$

The transformation from Z to \tilde{Z} is in $U(1, n-1)$, that is, an isometry in the indefinite Fubini-Study metric on $\mathbb{C} P_{+}^{n-1}$. From its converse,

$$
\begin{aligned}
& z_{1}=\frac{1}{d}\left(\tilde{z_{1}}-c \tilde{z_{2}}\right) \quad, \\
& z_{2}=\frac{1}{d}\left(\tilde{c} \tilde{z_{1}}-\tilde{z_{2}}\right) \\
& z_{3}=\tilde{z_{3}}, \cdots, z_{n}=\tilde{z_{n}} .
\end{aligned}
$$

Since the hyperplane H has the equation $\tilde{z_{1}}$ in the new coordinate system, it follows that $\mathbb{Q}_{+}^{n-2} \cap H$ satisfies

$$
\begin{aligned}
& \widetilde{z}_{1}=0 \\
& \left(\frac{1-c^{2}}{d^{2}}\right){\widetilde{z_{2}}}^{2}+{\widetilde{z_{3}}}^{2}+\cdots+{\widetilde{z_{n}}}^{2}=0, \\
& \left|\widetilde{z_{2}}\right|^{2}+\cdots+\left|\widetilde{z_{n}}\right|^{2}>0
\end{aligned}
$$

But the restriction of the indefinite Fubini-Study metric on $\mathbb{C} P_{+}^{n-1}$ to the hyperplane $\widetilde{z}_{1}=0$ is just the usual Fubini-Study metric on $\mathbb{C} P^{n-2}$. Hence $\mathbb{Q}^{n-2} \cap H$ is isometric to the quadric

$$
k\left(\widetilde{z_{2}}\right)^{2}+\left(\widetilde{z_{3}}\right)^{2}+\cdots+\left(\widetilde{z_{n}}\right)^{2}=0
$$

in $\mathbb{C} P^{n-2}$, where not all \widetilde{z}_{i} 's are zero.
Proposition 2.8. $\mathbb{Q}^{2} \cap H: \sum_{i=1}^{4} \epsilon_{i} a_{i} z_{i}=0$, where $\left.A=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right)$ is timelike in \mathbb{C}_{1}^{4}, is a compact surface S of genus 0 whose Gauss curvature K with respect to the indefinite Fubini-Study metric satisfies

$$
\begin{aligned}
\max K(p) & =2-\frac{1}{|k|^{4}} \\
\min K(p) & =2-|k|^{2}
\end{aligned}
$$

where k is given in Proposition 2.7.
Proof. We may assume H has the equation $z_{1}-i t z_{2}=0,0 \leq t<1$. Then $H \cap \mathbb{Q}^{2}=H \cap \mathbb{Q}_{+}^{2}$. We already know that $H \cap \mathbb{Q}^{2}$ is isometric to quadric $k\left(z_{2}\right)^{2}+\left(z_{3}\right)^{2}+\left(z_{4}\right)^{2}=0$ in $\mathbb{C} P^{2}$. The Gauss curvature of S at any point $p=\left(z_{2}, z_{3}, z_{4}\right)$ is given by the formula

$$
K(p)=2-\frac{|k|^{2}\left(\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}+\left|z_{4}\right|^{2}\right)^{3}}{\left(|k|^{2}\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}+\left|z_{4}\right|^{2}\right)^{3}}
$$

from which

$$
\begin{aligned}
\max K(p) & =2-\frac{1}{|k|^{4}}, \\
\operatorname{minK} K(p) & =2-|k|^{2}
\end{aligned}
$$

References

[1] Abe, K. and Magid, M., Indefinite Rigidity of Complex Submanifold and Maximal Surfaces, Mathematical Proceedings 106 (1989), no. 3, 481-494
[2] Akutagawa, K. and Nishigawa, S., The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space, Tohoku Mathematical Journal 42 (1990), no. 1, 67-82.
[3] Asperti, Antonio C. and Vilhena, Jose Antonio M., Spacelike Surfaces in L^{4} with Degenerate Gauss Map, Results in Mathematics 60 (2011), no. 1, 185-211.
[4] Graves, L., Codimension One Isometric Immersions between Lorentz Spaces, Ph.D. Thesis, Brown University, 1977.
[5] Kobayasi, O., Maximal Surfaces in the 3-dimensional Minkowski Space L^{3}, Tokyo J. Math. 6 (1983), 297-309.
[6] Milnor, T. K., Harmonic Maps and Classical Surface Theory in Minkowski 3-space, Trans. of AMS 280 (1983), 161-185.
[7] O'Neil, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
[8] Osserman, R.,A Survey of Minimal Surfaces, Dover, New York, 1986
Seong-Kowan Hong
Department of Mathematics Education, Pusan National University, Busan, 609735, Republic of Korea

E-mail address: aromhong@hanafos.com

