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SOME INTEGRAL REPRESENTATIONS OF THE CLAUSEN

FUNCTION Cl2(x) AND THE CATALAN CONSTANT G

Junesang Choi

Abstract. The Clausen function Cl2(x) arises in several applications. A

large number of indefinite integrals of logarithmic or trigonometric func-
tions can be expressed in closed form in terms of Cl2(x). Very recently,

Choi and Srivatava [3] and Choi [1] investigated certain integral formulas

associated with Cl2(x). In this sequel, we present an interesting new def-
inite integral formula for the Clausen function Cl2(x) by using a known

relationship between the Clausen function Cl2(x) and the generalized Zeta

function ζ(s, a). Also an interesting integral representation for the Catalan
constant G is considered as one of two special cases of our main result.

1. Introduction, Definitions and Preliminaries

Clausen’s integral (or, synonymously, Clausen’s function) Cl2(x) is defined
by

Cl2(x) :=

∞∑
k=1

sin kx

k2
= −

x∫
0

log

[
2 sin

(
1

2
η

)]
dη (x ∈ R), (1.1)

where R denotes the set of real numbers. This integral was first treated by
Clausen in 1832 [4] and has since then been investigated by many authors (see,
e.g., [5], [7], [8], [9, Chapter 4], [12, Section 2.4], and many of the references
cited therein). Some known properties and special values of the Clausen integral
(or the Clausen function) include the periodic properties given by

Cl2(2nπ ± θ) = Cl2(±θ) = ±Cl2(θ), (1.2)

which, for n = 1 and with θ replaced by π + θ, yields

Cl2(π + θ) = −Cl2(π − θ). (1.3)

From the series definition (1.1), it is obvious that

Cl2(nπ) = 0 (n ∈ Z := {0,±1,±2, · · · }), (1.4)
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which, for n = 1, gives

π∫
0

log

(
2 sin

1

2
θ

)
dθ = 0 and

π/2∫
0

log (sin θ) dθ = −π
2

log 2. (1.5)

Setting θ = 1
2π in the series definition (1.1), and using the periodic property

(1.3), we find that

Cl2

(
1

2
π

)
= G = −Cl2

(
3

2
π

)
, (1.6)

where G is the Catalan constant defined by

G :=
1

2

1∫
0

K(κ)dκ =

∞∑
m=0

(−1)m

(2m+ 1)2
∼= 0.91596 55941 · · · , (1.7)

where K(κ) is the complete elliptic integral of the first kind given by

K(κ) :=

π/2∫
0

dt√
1− κ2 sin2 t

(|κ| < 1). (1.8)

From (1.2), (1.3) and (1.4), it suffices to consider Cl2 (x) in the interval (0, π).
Hurwitz (or generalized) Zeta function ζ(s, a) is defined by

ζ(s, a) :=

∞∑
k=0

1

(k + a)
s (<(s) > 1; a ∈ C \ Z−0 ), (1.9)

where C and Z−0 denote the sets of complex numbers and nonpositive integers,
respectively.

The Clausen function Cl2(x) arises in several applications. A large number of
indefinite integrals of logarithmic or trigonometric functions can be expressed in
closed form in terms of Cl2(x) (see, e.g., [9] and [10, Section 1.6]). Very recently,
Choi and Srivatava [3] and Choi [1] investigated certain integral formulas asso-
ciated with Cl2(x). In this sequel, we present an interesting new definite integral
formula for the Clausen function Cl2(x) by using a known relationship between
the Clausen function Cl2(x) and the generalized Zeta function ζ(s, a). Also an
interesting integral representation for the Catalan constant G is considered as
one of two special cases of our main result.

2. Certain integral representations of the Clausen function Cl2(x)
and the Catalan constant G

We begin by recalling an interesting relationship between the Clausen func-
tion Cl2(x) and the generalized Zeta function ζ(s, a) as in the following lemma
(see [1, Lemma 3]).
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Lemma 1. The following relationship holds true:

Cl2(x) =− x log
( x

2π

)
+ 2π

[
ζ ′
(
−1, 1 +

x

2π

)
− ζ ′

(
−1, 1− x

2π

)]
(−2π < x < 2π).

(2.1)

Among various integral representations of ζ(s, a) (see, e.g., [12, Section 2.2]),
we choose to recall a known formula (see, e.g., [12, p. 160, Eq. (23)]) in the
following lemma.

Lemma 2. The following integral formula for ζ(s, a) holds true:

ζ(s, a) =
π 2s−2

s− 1

·
∫ ∞
0

[
t2 + (2a− 1)2

] 1
2 (1−s)

cos
[
(s− 1) arctan

(
t

2a−1

)]
cosh2

(
1
2πt
) dt(

s ∈ C \ {1}; <(a) >
1

2

)
.

(2.2)

Differentiating (2.2) with respect to s and setting s = −1 in the resulting
identity, and considering the relation in (2.1), we obtain an interesting integral
representation for Cl2(x) asserted by the following theorem.

Theorem. The following integral representation for Cl2(x) holds true:

Cl2(x) =− x log
x

2π
+
π2

16

∞∫
0

[
(1 + 2 log 2) (p(t;x)− p(t;−x))

+ (q(t;x)− q(t;−x)) + 2(r(t;x)− r(t;−x))
]
dt

(−π < x < π),

(2.3)

where, for convenience, the functions p(t;x), q(t;x) and r(t;x) are defined by

p(t;x) :=

(
t2 +

(
1− x

π

)2) cos
(

2 arctan
(
π t
π−x

))
cosh2

(
1
2 π t

) , (2.4)

q(t;x) := log

(
t2 +

(
1 +

x

π

)2)
p(t;−x) (2.5)

and

r(t;x) := arctan

(
π t

π − x

) (
t2 +

(
1− x

π

)2) sin
(

2 arctan
(
π t
π−x

))
cosh2

(
1
2 π t

) . (2.6)

A large number of integral formulas for the Catalan constant G in (1.7) has
been presented (see, e.g., [6]). In view of (1.6), setting x = π/2 in (2.3) yields an
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interesting new integral formula for the Catalan constant G as in the following
corollary.

Corollary. Each of the following integral formulas holds true:

G = π log 2 +
π2

16

∞∫
0

[
(1 + 2 log 2) (p(t;π/2)− p(t;−π/2))

+ (q(t;π/2)− q(t;−π/2)) + 2(r(t;π/2)− r(t;−π/2))
]
dt.

(2.7)
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