East Asian Math. J.
Vol. 32 (2016), No. 1, pp. 043-046
YNMS
http://dx.doi.org/10.7858/eamj.2016.005

SOME INTEGRAL REPRESENTATIONS OF THE CLAUSEN FUNCTION $\mathrm{Cl}_{2}(x)$ AND THE CATALAN CONSTANT G

Junesang Choi

Abstract

The Clausen function $\mathrm{Cl}_{2}(x)$ arises in several applications. A large number of indefinite integrals of logarithmic or trigonometric functions can be expressed in closed form in terms of $\mathrm{Cl}_{2}(x)$. Very recently, Choi and Srivatava [3] and Choi [1] investigated certain integral formulas associated with $\mathrm{Cl}_{2}(x)$. In this sequel, we present an interesting new definite integral formula for the Clausen function $\mathrm{Cl}_{2}(x)$ by using a known relationship between the Clausen function $\mathrm{Cl}_{2}(x)$ and the generalized Zeta function $\zeta(s, a)$. Also an interesting integral representation for the Catalan constant G is considered as one of two special cases of our main result.

1. Introduction, Definitions and Preliminaries

Clausen's integral (or, synonymously, Clausen's function) $\mathrm{Cl}_{2}(x)$ is defined by

$$
\begin{equation*}
\mathrm{Cl}_{2}(x):=\sum_{k=1}^{\infty} \frac{\sin k x}{k^{2}}=-\int_{0}^{x} \log \left[2 \sin \left(\frac{1}{2} \eta\right)\right] d \eta \quad(x \in \mathbb{R}) \tag{1.1}
\end{equation*}
$$

where \mathbb{R} denotes the set of real numbers. This integral was first treated by Clausen in 1832 [4] and has since then been investigated by many authors (see, e.g., [5], [7], [8], [9, Chapter 4], [12, Section 2.4], and many of the references cited therein). Some known properties and special values of the Clausen integral (or the Clausen function) include the periodic properties given by

$$
\begin{equation*}
\mathrm{Cl}_{2}(2 n \pi \pm \theta)=\mathrm{Cl}_{2}(\pm \theta)= \pm \mathrm{Cl}_{2}(\theta) \tag{1.2}
\end{equation*}
$$

which, for $n=1$ and with θ replaced by $\pi+\theta$, yields

$$
\begin{equation*}
\mathrm{Cl}_{2}(\pi+\theta)=-\mathrm{Cl}_{2}(\pi-\theta) . \tag{1.3}
\end{equation*}
$$

From the series definition (1.1), it is obvious that

$$
\begin{equation*}
\mathrm{Cl}_{2}(n \pi)=0 \quad(n \in \mathbb{Z}:=\{0, \pm 1, \pm 2, \cdots\}) \tag{1.4}
\end{equation*}
$$

[^0]which, for $n=1$, gives
\[

$$
\begin{equation*}
\int_{0}^{\pi} \log \left(2 \sin \frac{1}{2} \theta\right) d \theta=0 \quad \text { and } \quad \int_{0}^{\pi / 2} \log (\sin \theta) d \theta=-\frac{\pi}{2} \log 2 \tag{1.5}
\end{equation*}
$$

\]

Setting $\theta=\frac{1}{2} \pi$ in the series definition (1.1), and using the periodic property (1.3), we find that

$$
\begin{equation*}
\mathrm{Cl}_{2}\left(\frac{1}{2} \pi\right)=\mathrm{G}=-\mathrm{Cl}_{2}\left(\frac{3}{2} \pi\right) \tag{1.6}
\end{equation*}
$$

where G is the Catalan constant defined by

$$
\begin{equation*}
\mathrm{G}:=\frac{1}{2} \int_{0}^{1} \mathbf{K}(\kappa) d \kappa=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m+1)^{2}} \cong 0.9159655941 \cdots, \tag{1.7}
\end{equation*}
$$

where $\mathbf{K}(\kappa)$ is the complete elliptic integral of the first kind given by

$$
\begin{equation*}
\mathbf{K}(\kappa):=\int_{0}^{\pi / 2} \frac{d t}{\sqrt{1-\kappa^{2} \sin ^{2} t}} \quad(|\kappa|<1) \tag{1.8}
\end{equation*}
$$

From (1.2), (1.3) and (1.4), it suffices to consider $\mathrm{Cl}_{2}(x)$ in the interval $(0, \pi)$. Hurwitz (or generalized) Zeta function $\zeta(s, a)$ is defined by

$$
\begin{equation*}
\zeta(s, a):=\sum_{k=0}^{\infty} \frac{1}{(k+a)^{s}} \quad\left(\Re(s)>1 ; a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right) \tag{1.9}
\end{equation*}
$$

where \mathbb{C} and \mathbb{Z}_{0}^{-}denote the sets of complex numbers and nonpositive integers, respectively.

The Clausen function $\mathrm{Cl}_{2}(x)$ arises in several applications. A large number of indefinite integrals of logarithmic or trigonometric functions can be expressed in closed form in terms of $\mathrm{Cl}_{2}(x)$ (see, e.g., [9] and [10, Section 1.6]). Very recently, Choi and Srivatava [3] and Choi [1] investigated certain integral formulas associated with $\mathrm{Cl}_{2}(x)$. In this sequel, we present an interesting new definite integral formula for the Clausen function $\mathrm{Cl}_{2}(x)$ by using a known relationship between the Clausen function $\mathrm{Cl}_{2}(x)$ and the generalized Zeta function $\zeta(s, a)$. Also an interesting integral representation for the Catalan constant G is considered as one of two special cases of our main result.

2. Certain integral representations of the Clausen function $\mathrm{Cl}_{2}(x)$ and the Catalan constant G

We begin by recalling an interesting relationship between the Clausen function $\mathrm{Cl}_{2}(x)$ and the generalized Zeta function $\zeta(s, a)$ as in the following lemma (see [1, Lemma 3]).

Lemma 1. The following relationship holds true:

$$
\begin{gather*}
\mathrm{Cl}_{2}(x)=-x \log \left(\frac{x}{2 \pi}\right)+2 \pi\left[\zeta^{\prime}\left(-1,1+\frac{x}{2 \pi}\right)-\zeta^{\prime}\left(-1,1-\frac{x}{2 \pi}\right)\right] \tag{2.1}\\
(-2 \pi<x<2 \pi) .
\end{gather*}
$$

Among various integral representations of $\zeta(s, a)$ (see, e.g., [12, Section 2.2]), we choose to recall a known formula (see, e.g., [12, p. 160, Eq. (23)]) in the following lemma.

Lemma 2. The following integral formula for $\zeta(s, a)$ holds true:

$$
\begin{align*}
& \zeta(s, a)=\frac{\pi 2^{s-2}}{s-1} \\
& \quad \cdot \int_{0}^{\infty}\left[t^{2}+(2 a-1)^{2}\right]^{\frac{1}{2}(1-s)} \frac{\cos \left[(s-1) \arctan \left(\frac{t}{2 a-1}\right)\right]}{\cosh ^{2}\left(\frac{1}{2} \pi t\right)} d t \tag{2.2}\\
& \quad\left(s \in \mathbb{C} \backslash\{1\} ; \Re(a)>\frac{1}{2}\right) .
\end{align*}
$$

Differentiating (2.2) with respect to s and setting $s=-1$ in the resulting identity, and considering the relation in (2.1), we obtain an interesting integral representation for $\mathrm{Cl}_{2}(x)$ asserted by the following theorem.
Theorem. The following integral representation for $\mathrm{Cl}_{2}(x)$ holds true:

$$
\begin{gather*}
\mathrm{Cl}_{2}(x)=-x \log \frac{x}{2 \pi}+\frac{\pi^{2}}{16} \int_{0}^{\infty}[(1+2 \log 2)(p(t ; x)-p(t ;-x)) \tag{2.3}\\
+(q(t ; x)-q(t ;-x))+2(r(t ; x)-r(t ;-x))] d t \\
(-\pi<x<\pi)
\end{gather*}
$$

where, for convenience, the functions $p(t ; x), q(t ; x)$ and $r(t ; x)$ are defined by

$$
\begin{gather*}
p(t ; x):=\left(t^{2}+\left(1-\frac{x}{\pi}\right)^{2}\right) \frac{\cos \left(2 \arctan \left(\frac{\pi t}{\pi-x}\right)\right)}{\cosh ^{2}\left(\frac{1}{2} \pi t\right)} \tag{2.4}\\
q(t ; x):=\log \left(t^{2}+\left(1+\frac{x}{\pi}\right)^{2}\right) p(t ;-x) \tag{2.5}
\end{gather*}
$$

and

$$
\begin{equation*}
r(t ; x):=\arctan \left(\frac{\pi t}{\pi-x}\right)\left(t^{2}+\left(1-\frac{x}{\pi}\right)^{2}\right) \frac{\sin \left(2 \arctan \left(\frac{\pi t}{\pi-x}\right)\right)}{\cosh ^{2}\left(\frac{1}{2} \pi t\right)} . \tag{2.6}
\end{equation*}
$$

A large number of integral formulas for the Catalan constant G in (1.7) has been presented (see, e.g., [6]). In view of (1.6), setting $x=\pi / 2$ in (2.3) yields an
interesting new integral formula for the Catalan constant G as in the following corollary.
Corollary. Each of the following integral formulas holds true:

$$
\begin{align*}
\mathrm{G}=\pi & \log 2+\frac{\pi^{2}}{16} \int_{0}^{\infty}[(1+2 \log 2)(p(t ; \pi / 2)-p(t ;-\pi / 2)) \tag{2.7}\\
& +(q(t ; \pi / 2)-q(t ;-\pi / 2))+2(r(t ; \pi / 2)-r(t ;-\pi / 2))] d t .
\end{align*}
$$

References

[1] J. Choi, An integral representation of the Clausen function $\mathrm{Cl}_{2}(x)$, submitted for publication (2014).
[2] J. Choi and H. M. Srivastava, Mathieu series and associated sums involving the Zeta functions, Comput. Math. Appl. 59 (2010), 861-867.
[3] J. Choi and H. M. Srivastava, Clausen function $\mathrm{Cl}_{2}(x)$ and its related integrals, submitted for publication (2014).
[4] T. Clausen, Über die function $\sin \varphi+\frac{1}{2^{2}} \sin 2 \varphi+\frac{1}{3^{2}} \sin 3 \varphi+$ etc., J. Reine Angew. Math. 8 (1832), 298-300.
[5] P. J. de Doelder, On the Clausen integral $\mathrm{Cl}_{2}(\theta)$, J. Comput. Appl. Math. 11 (1984), 325-330.
[6] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Corrected and Enlarged edition prepared by A. Jeffrey), Academic Press, New York, 1980; Sixth edition, 2000.
[7] C. C. Grosjean, Formulae concerning the computation of the Clausen integral $\mathrm{Cl}_{2}(\theta), J$. Comput. Appl. Math. 11 (1984), 331-342.
[8] K. S. Kölbig, Chebyshev coefficients for the Clausen function $\mathrm{Cl}_{2}(x)$, J. Comput. Appl. Math. 64 (1995), 295-297.
[9] L. Lewin, Polylogarithms and Associated Functions, Elsevier (North-Holland), New York, London and Amsterdam, 1981.
[10] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions, Gordon and Breach Science Publishers, New York, 1986.
[11] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, and London, 2001.
[12] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
[13] V. E. Wood, Efficient calculation of Clausen's integral, Math. Comput. 22 (1968), 883884.

Junesang Choi
Department of Mathematics, Dongguk University
Gyeongju 38066, Republic of Korea
E-mail address: junesang@mail.dongguk.ac.kr

[^0]: Received May 16, 2015 ; Accepted January 14, 2016.
 2010 Mathematics Subject Classification. Primary 33B10, 33B15; Secondary 11M06, 11M35.

 Key words and phrases. Clausen function $\mathrm{Cl}_{2}(x)$; Catalan constant; Generalized zeta function.

