DOI QR코드

DOI QR Code

TRANSVERSAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD OF A QUASI-CONSTANT CURVATURE

  • Jin, Dae Ho (Department of Mathematics Dongguk University)
  • 투고 : 2015.05.07
  • 심사 : 2015.10.06
  • 발행 : 2016.01.30

초록

We study transversal half lightlike submanifolds of an indefinite Kaehler manifold of a quasi-constant curvature. First, we provide a new result for such a transversal half lightlike submanifold. Next, we investigate a statical half lightlike submanifold M such that (1) the screen distribution S(TM) is totally umbilical, or (2) M is screen homothetic.

키워드

참고문헌

  1. B.Y. Chen and K.Yano, Hypersurfaces of a conformally flat space, Tensor (N. S.) 26, 1972, 318-322.
  2. G. de Rham, Sur la reductibilite d'un espace de Riemannian, Comm. Math. Helv. 26, 1952, 328-344. https://doi.org/10.1007/BF02564308
  3. K.L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
  4. K.L. Duggal and D.H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ., 22, 1999, 121-161.
  5. K.L. Duggal and D.H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
  6. K.L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhauser, 2010.
  7. D.H. Jin, A characterization of screen conformal half lightlike submanifolds, Honam Mathematical J. 31(1), 2009, 17-23. https://doi.org/10.5831/HMJ.2009.31.1.017
  8. D.H. Jin, Geometry of screen conformal real half lightlike submanifolds, Bull. Korean Math. Soc., 47(4), 2010, 701-714. https://doi.org/10.4134/BKMS.2010.47.4.701
  9. D.H. Jin, Real half lightlike submanifolds with totally umbilical properties, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 17(1), 2010, 51-63.
  10. D.H. Jin, Transversal half lightlike submanifolds of an indefinite Sasakian manifold, J. Korean Soc Math. Edu. Ser. B: Pure Appl. Math. 18(1), 2011, 51-61.
  11. D.H. Jin, Half lightlike submanifolds of an indefinite Sasakian manifold, J. Korean Soc Math. Edu. Ser. B: Pure Appl. Math. 18(2), 2011, 173-183.
  12. D.H. Jin, A semi-Riemannian manifold of quasi-constant curvature admits some half lightlike submanifolds, Bull. Korean Math. Soc. 50(3), 2013, 1041-1048. https://doi.org/10.4134/BKMS.2013.50.3.1041
  13. D.H. Jin, Statical half lightlike submanifolds of an indefinite Kaehler manifold of a quasi-constant curvature, submitted in Commun. Korean Math. Soc.
  14. D.N. Kupeli, Singular Semi-Riemannian Geometry. Mathematics and Its Applications, Kluwer Acad. Publishers, Dordrecht, 1996.