DOI QR코드

DOI QR Code

Nonlinear Inference Using Fuzzy Cluster

퍼지 클러스터를 이용한 비선형 추론

  • Park, Keon-Jung (Dept. of Information and Communication, Wonkwang University) ;
  • Lee, Dong-Yoon (Dept. of Electrical Electronic Engineering, Joongbu University)
  • 박건준 (원광대학교 정보통신공학과) ;
  • 이동윤 (중부대학교 전기전자공학과)
  • Received : 2015.11.20
  • Accepted : 2016.01.20
  • Published : 2016.01.28

Abstract

In this paper, we introduce a fuzzy inference systems for nonlinear inference using fuzzy cluster. Typically, the generation of fuzzy rules for nonlinear inference causes the problem that the number of fuzzy rules increases exponentially if the input vectors increase. To handle this problem, the fuzzy rules of fuzzy model are designed by dividing the input vector space in the scatter form using fuzzy clustering algorithm which expresses fuzzy cluster. From this method, complex nonlinear process can be modeled. The premise part of the fuzzy rules is determined by means of FCM clustering algorithm with fuzzy clusters. The consequence part of the fuzzy rules have four kinds of polynomial functions and the coefficient parameters of each rule are estimated by using the standard least-squares method. And we use the data widely used in nonlinear process for the performance and the nonlinear characteristics of the nonlinear process. Experimental results show that the non-linear inference is possible.

본 논문에서는 퍼지 클러스터를 이용한 비선형 추론을 위한 퍼지 추론 시스템을 소개한다. 전형적으로, 비선형 추론을 위한 퍼지 규칙의 생성은 일반적으로 입력 벡터 차원이 증가하면 규칙의 수가 지수적으로 증가하게 된다. 이러한 문제점을 해결하기 위해, 퍼지 클러스터를 표현할 수 있는 퍼지 클러스터링 알고리즘을 이용하여 입력 벡터 공간을 분산 형태로 분할하여 퍼지 모델의 규칙을 설계한다. 이러한 방법으로 복잡하고 비선형적인 공정을 퍼지 모델링 할 수 있다. 퍼지 규칙의 전반부는 퍼지 클러스터를 갖는 FCM 클러스터링 알고리즘에 의해 결정된다. 퍼지 규칙의 후반부는 4가지 형태의 다항식 함수의 형태를 가지며, 각 규칙의 후반부 파라미터들은 표준 최소자승법을 이용함으로써 추정된다. 그리고 비선형 공정의 특성 및 성능을 평가하기 위하여 비선형 공정으로 많이 이용되고 있는 데이터를 이용한다. 실험 결과는 비선형 추론이 가능하다는 것을 보여준다.

Keywords

References

  1. R.M. Tong, "Synthesis of fuzzy models for industrial processes", Int. J. Gen. Syst., Vol. 4, pp.143-162, 1978. https://doi.org/10.1080/03081077808960680
  2. W. Pedrycz, "An identification algorithm in fuzzy relational system", Fuzzy Sets Syst., Vol. 13, pp.153-167, 1984. https://doi.org/10.1016/0165-0114(84)90015-0
  3. W. Pedrycz, "Numerical and application aspects of fuzzy relational equations", Fuzzy Sets Syst., Vol. 11, pp.1-18, 1983. https://doi.org/10.1016/S0165-0114(83)80065-7
  4. E. Czogola and W. Pedrycz, "On identification in fuzzy systems and its applications in control problems", Fuzzy Sets Syst., Vol. 6, pp.73-83, 1981. https://doi.org/10.1016/0165-0114(81)90081-6
  5. R. M. Tong, "The evaluation of fuzzy models derived from experimental data", Fuzzy Sets Syst., Vol. 13, pp.1-12, 1980.
  6. C. W. Xu, "Fuzzy system identification", IEEE Proceeding Vol. 126, No. 4, pp.146-150, 1989.
  7. C. W. Xu and Y. Zailu, "Fuzzy model identification self-learning for dynamic system", IEEE Trans. on Syst. Man, Cybern., Vol. SMC-17, No. 4, pp.683-689, 1987.
  8. K. J. Park, D. Y. Lee, "Characteristics of Fuzzy Inference Systems by Means of Partition of Input Spaces in Nonlinear Process", The Korea Contents Association, Vol. 11, No. 3, pp. 48-55, 2011. https://doi.org/10.5392/JKCA.2011.11.3.048
  9. K. J. Park, D. Y. Lee, "Characteristics of Input-Output Spaces of Fuzzy Inference Systems by Means of Membership Functions and Performance Analyses", The Korea Contents Association, Vol. 11, No. 4, pp. 74-82, 2011. https://doi.org/10.5392/JKCA.2011.11.4.074
  10. K. J. Park, D. Y. Lee, "Nonlinear Characteristics of Fuzzy Inference Systems by Means of Individual Input Space", The Korea Academia-Industrial Cooperation Society, Vol. 12, No. 11, pp. 5164-5171, 2011. https://doi.org/10.5762/KAIS.2011.12.11.5164
  11. K. J. Park, D. Y. Lee, "Nonlinear Characte ristics of Non-Fuzzy Inference Systems Based on HCM Clustering Algorithm", The Korea Academia- Industrial Cooperation Society, Vol. 13, No. 11, pp. 5379-5388, 2012. https://doi.org/10.5762/KAIS.2012.13.11.5379
  12. K. J. Park, D. Y. Lee, "Design of Fuzzy Neural Networks Based on Fuzzy Clustering and its Application", The Korea Academia-Industrial Cooperation Society, Vol. 14, No. 1, pp. 378-384, 2013. https://doi.org/10.5762/KAIS.2013.14.1.378
  13. K. J. Park, D. Y. Lee, "Genetic Optimization of Fuzzy Inference Systems by Means of Fuzzy C-Means Ciustering ", INFORMATION Journal, Vol. 16, No. 12(A), pp.8439-8444, 2013.
  14. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, PlenumPress, NewYork, 1981.
  15. Box and Jenkins, "Time Series nalysis,Forcasting and Control", Holden Day, SanFrancisco, CA.