DOI QR코드

DOI QR Code

기둥의 길이변화에 따른 전이슬래브 시스템의 압축성능 평가

Evaluation on the Compression Capacity of Transfer Slab Systems according to the Variation of Column Length

  • Sim, Yeon-Ju (Dept. of Architectural Engineering, Hanyang University) ;
  • Choi, Chang-Sik (Dept. of Architectural Engineering, Hanyang University)
  • 투고 : 2016.07.26
  • 심사 : 2016.10.19
  • 발행 : 2016.12.30

초록

본 논문은 공동주택 아파트에 저층에 위치해 있는 필로티에서 사용되는 전이시스템의 성능을 평가한 것이다. 전이시스템은 2개의 층으로 구성이 되어 주로 벽식구조 아파트에서 낮은 층에 사용되며, 하부기둥의 갑작스런 단면변화가 있는 곳에 상부벽체에서 하부기둥까지 하중을 전달시킨다. 특히, 전이보는 자주 사용하는 전이시스템 중 하나이지만 낮은 시공성과 경제성의 단점을 가지고 있다. 따라서 기존의 연구에서 제시되어 있듯이 전이슬래브와 같은 전이시스템이 제안되었으며 연구가 진행되어 왔다. 본 연구에서는 전이슬래브의 압축성능을 검증하기 위해 축하중을 받는 필로티 전이시스템에 대한 실험이 수행되었다. 유한요소해석을 통해 최종적으로 2가지의 실험체가 결정이 되었으며, 결정된 전이슬래브 실험체는 기둥의 길이를 변수로 두었으며, 하부 기둥의 길이가 상부 벽체 길이의 40%와 50%로 나누었다. 실험을 통해 축하중을 받는 전이슬래브 시스템의 압축성능은 기둥의 길이에 영향을 받아 기둥의 길이가 벽체의 길이의 40%와 50%인 실험체 각각의 압축 성능은 설계하중보다 52%와 46% 높았다.

This paper presents compression capacity of transfer system in pilotis subjected to axial load. Recently, transfer system is usually used in low floors of wall-typed apartments when members' sections are suddenly changed between upper walls and bottom columns. It can help transfer loads from the walls to the columns. Especially, a transfer girder system is usually used as one of transfer systems applied to a pilotis. However, the transfer girder system has low constructability and economics. Therefore, the other transfer system with transfer slab was suggested and has been studied. In this paper, to evaluate the compression capacity of transfer slab, tests were conducted on pilotis transfer slab systems subjected to axial load. First of all, two specimens were determined by FEM. The main parameter is length of the bottom columns. The lengh of the bottom columns were 40% and 50% of length of upper walls in the tranfer slab specimens. Results showed that the compression capacity of piloti transfer systems subjected to axial load was affected by length of bottom columns. The compression capacity is 52% higher than design strength for specimen with the bottom column's length of 40% of length of the upper wall and 46% for specimen with the bottom column's length of 50% of length of the upper wall.

키워드

참고문헌

  1. Sim, Y. J., and Choi, C. S., "Evaluation of Effective Structural Transfer Systems", Journal of the Korea Concrete Institute, Vol. 26, No. 2, 2015, pp. 247-248.
  2. Sim, Y. J., and Choi, C. S., "An Experimental Study on Piloti Transfer Systems Subjected to Axial Load", Journal of the Korea Concrete Institute, Vol. 28, No. 1, 2016, pp. 103-104.
  3. Choi, Y. C., Choi, H. K., Choi, C. S., and Lee, L. H., "The Behavior of Reinforced Concrete Coupling Slab in Wall-Dominant System", Journal of the Korea Concrete Institute, Vol. 18, No. 2, 2006, pp. 61-64.
  4. Chang, K. K., Seo, D. W., and Chun, Y. S., "The Behavior of Reinforced Concrete Coupling Elements in Wall-Dominant System", Journal of the Korea Concrete Institute, Vol. 14, No. 1, 2002, pp. 83-91. https://doi.org/10.4334/JKCI.2002.14.1.083
  5. Yoon, J. K., Kang, S. M., Kim, O. J., and Lee, D. B., "A Study on the Behavior and Practical Design Method for Transfer Slab used in Shear Wall Typed Apartment with Piloti under Pit Level", Journal of the Architectural Institute of Korea, Vol. 28, No. 1, 2008, pp. 231-234.
  6. Korea Concrete Institute, Concrete Design Code and Commentary, Kimoondang Publishing Company, Seoul, Korea, 2012, p. 600.
  7. Paulay, T., and Taylor, R. G., "Slab Coupling of Earthquake-Resisting Shearwalls," ACI Structural Journal, Vol. 78, No. 2, 1981, pp. 130-140.
  8. Schwaighofer, J., and Michal, Collins, P., "Experimental Study of the Behavior of Reinforced Concrete Coupling Slabs," ACI Structural Journal, Vol. 74, No. 3, 1977, pp. 123-127.
  9. KS F 2405, Standare test method of test for compressive strength of concrete, Korean Agency for Technology and Standards, 2010, pp. 1-6.
  10. KS D 3504, Steel bars for concrete reinforcement, Korean Agency for Technology and Standards, 2016, pp. 1-31.