DOI QR코드

DOI QR Code

EC-2의 콘크리트 응력-변형률 곡선에 기반한 휨부재의 유효단면2차모멘트

Effective Moment of Inertia of Flexural Members Based on the Concrete Stress-Strain Curve in EC-2

  • 염환석 (광주대학교 건축학부) ;
  • 김우 (전남대학교 토목공학과)
  • Yum, Hwan-Seok (School of Architecture, Gwangju University) ;
  • Kim, Woo (Dept. of Civil Engineering, Chonnam National University)
  • 투고 : 2016.06.26
  • 심사 : 2016.09.05
  • 발행 : 2016.12.30

초록

본 연구는 EC-2에서 규정된 포물-직사각형 응력-변형률 곡선에 근거하여 비선형 해석을 수행하여 구해진 철근콘크리트 보의 휨모멘트-평균곡률 관계와 유효단면2차모멘트를 보여주고 있다. 검토된 변수는 콘크리트 강도와 철근비이고, 비선형 해석으로 얻어진 휨모멘트-평균곡률 관계와 유효단면2차모멘트를 현행 KCI 규준과 비교하였다. 비교한 결과는 다음과 같다. KCI 규준(Branson 방법)은 원래 $M/M_{cr}$은 2.2에서 4까지이고, $I_{ut}/I_{cr}$은 1.3에서 3.5까지의 범위의 실험 자료에서 근거하여 유도되었으므로 이 범위 내에서는 비선형 해석으로 얻어진 단면2차모멘트가 Branson 방법으로 구한 값과 잘 일치하였다. 그러나 이 범위 밖에서는 두 결과가 크게 차이가 있음을 발견하였다. 특히, 철근비가 작은 보에서 비선형 해석으로 구한 단면2차모멘트가 KCI 규준(Branson 방법)으로 구한 것보다 크게 작아진다. 이 결과는 건물의 슬래브와 같이 철근비가 작은 부재의 처짐이 현행 설계규준에 따라 계산된 처짐보다 훨씬 더 커진다는 의미가 된다.

The present study shows the moment-average curvature relationship and effective inertia moment of RC beams obtained from the nonlinear analysis based on the parabola-rectangular stress-strain curve defined in EC-2 code. The variables examined are concrete strength and steel ratio, and moment-average curvature relationship and effective inertia moment obtained are compared with those of the current KCI provisions. As the results of the comparison, the followings could be said: Since the KCI provisions(the Branson method) were originally derived based on the experimental data ranged from 2.2 to 4 of $M/M_{cr}$ and 1.3 to 3.5 of $I_{ut}/I_{cr}$, thereby within these ranges the inertia moments obtained from the nonlinear analysis are closely agreed with those predicted by the Branson method. However, beyond those range the remarkable difference could be found between the two results. In particular, for beams having low steel ratio the inertia moment resulted from the nonlinear analysis are significantly smaller than those obtained from the KCI(Branson) method. This result may imply that the deflection of lightly reinforced members, such as slabs in buildings, becomes much larger than those calculated according to the current design provisions.

키워드

참고문헌

  1. Kim, W., Limit State Design of Concrete Structures, Dong Hwa Technology Publishing Co., 2015, pp. 70-71, pp. 73-74, pp. 84-86, pp. 105-107, pp. 121-127.
  2. Choi, S. W., and Kim, W., "Deflection Calculation Based on Stress-Strain Curve for Concrete in RC Members", KSCE Journal, Vol. 30, No. 4A, 2010, pp. 383-389.
  3. European Committee for Standardization, Eurocode2 (EN1992)-Design of Concrete Structures, EC Technical Committee CEN/TC 250, 1992, p. 34, 35, 40.
  4. Branson, D. E., "Instantaneous and Time-Dependent Deflections of Simple and Continuous Reinforced Concrete Beams," HPR Report No. 7, Part 1, Alabama Highway Department, Bureau of Public Roads, 1963(1965), pp. 1-78.
  5. Branson, D. E., Discussion of "Proposed Revision of ACI 318-63: Building Code Requirements for Reinforced Concrete" by ACI Committee 318, ACI Journal, Proceedings Vol. 67, No. 9, 1970, pp. 692-695.
  6. Branson, D. E., "Compression Steel Effect on Long- Time Deflections," ACI Journal, Vol. 68, No. 8, 1971, pp. 555-559.
  7. Branson, D. E., Deformation of Concrete Structures, McGraw Hill, New York, USA, 1977, pp. 113-128.
  8. Lee, G.Y., Ha, T.G., and Kim, W., "Modeling of Tension Stiffening Effect Based on Nonlinear Bond Characteristics in Structural Concrete Members", KCI Journal, Vol. 19, No. 6, 2007, pp. 745-754.
  9. KCI, Design Standards on Structural Concrete, Ministry of Land, Infrastructure and Transport, Kimoondang Publishing Co., 2012, 6.3.3(4).
  10. Kim, W., Kim, J.-K., Oh, B.-H., Chung, L., and Choi, W.-C., Design of Concrete Structures, Dong Hwa Technology Publishing Co., 2016, p. 251, pp. 257-260.