DOI QR코드

DOI QR Code

Arsenic-Induced Differentially Expressed Genes Identified in Medicago sativa L. roots

  • Rahman, Md. Atikur (Grassland & Forages Division, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Sang-Hoon (Grassland & Forages Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Ki-Yong (Grassland & Forages Division, National Institute of Animal Science, Rural Development Administration) ;
  • Park, Hyung Soo (Grassland & Forages Division, National Institute of Animal Science, Rural Development Administration) ;
  • Hwang, Tae Young (Grassland & Forages Division, National Institute of Animal Science, Rural Development Administration) ;
  • Choi, Gi Jun (Grassland & Forages Division, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Ki-Won (Grassland & Forages Division, National Institute of Animal Science, Rural Development Administration)
  • 투고 : 2016.08.15
  • 심사 : 2016.09.05
  • 발행 : 2016.09.30

초록

Arsenic (As) is a toxic element that easily taken up by plants root. Several toxic forms of As disrupt plant metabolism by a series of cellular alterations. In this study, we applied annealing control primer (ACP)-based reverse transcriptase PCR (polymerase chain reaction) technique to identify differentially expressed genes (DEGs) in alfalfa roots in response to As stress. Two-week-old alfalfa seedlings were exposed to As treatment for 6 hours. DEGs were screened from As treated samples using the ACP-based technique. A total of six DEGs including heat shock protein, HSP 23, plastocyanin-like domain protein162, thioredoxin H-type 1 protein, protein MKS1, and NAD(P)H dehydrogenase B2 were identified in alfalfa roots under As stress. These genes have putative functions in abiotic stress homeostasis, antioxidant activity, and plant defense. These identified genes would be useful to increase As tolerance in alfalfa plants.

키워드

참고문헌

  1. Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N.H.T., Zhu, S., Qiu, J.-L., Micheelsen, P., Rocher, A., Petersen, M., Newman, M.-A., Bjorn Nielsen, H., Hirt, H., Somssich, I., Mattsson, O. and Mundy, J. 2005. The MAP kinase substrate MKS1 is a regulator of plant defense responses. The EMBO Journal. 24:2579-2589. https://doi.org/10.1038/sj.emboj.7600737
  2. Azizur Rahman, M., Hasegawa, H., Mahfuzur Rahman, M., Nazrul Islam, M., Majid Miah, M.A. and Tasmen, A. 2007. Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67:1072-1079. https://doi.org/10.1016/j.chemosphere.2006.11.061
  3. Barh, D., Khan, M.S. and Davies, E. 2015. Plant omics: the omics of plant science. Spinger, New Delhi-India, 598 p
  4. Chakrabarty, D., Trivedi, P.K., Misra, P., Tiwari, M., Shri, M., Shukla, D., Kumar, S., Rai, A., Pandey, A., Nigam, D., Tripathi, R.D. and Tuli, R. 2009. Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere. 74:688-702. https://doi.org/10.1016/j.chemosphere.2008.09.082
  5. Daloso, D.M., Muller, K., Obata, T., Florian, A., Tohge, T., Bottcher, A., Riondet, C., Bariat, L., Carrari, F., Nunes-Nesi, A., Buchanan, B.B., Reichheld, J.-P., Araujo, W.L. and Fernie, A.R. 2015. Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proceedings of the National Academy of Sciences of the United States of America. 112:E1392-E1400. https://doi.org/10.1073/pnas.1424840112
  6. Ezaki, B., Sasaki, K., Matsumoto, H. and Nakashima, S. 2005. Functions of two genes in aluminium (Al) stress resistance: repression of oxidative damage by the AtBCB gene and promotion of efflux of Al ions by the NtGDI1 gene. Journal of Experimental Botany. 56:2661-2671. https://doi.org/10.1093/jxb/eri259
  7. Giri, A.V., Anishetty, S. and Gautam, P. 2004. Functionally specified protein signatures distinctive for each of the different blue copper proteins. BMC Bioinformatics. 5:127 https://doi.org/10.1186/1471-2105-5-127
  8. Kabata-Pendias, A. and Pendias, H. 1992. Trace Element in Soil and Plants, 2nd ed. CRC, London, UK.
  9. Kim, Y.-J., Kwak, C.-I., Gu, Y.-Y., Hwang, I.-T. and Chun, J.-Y. 2004. Annealing control primer system for identification of differentially expressed genes on agarose gels. Biotechniques. 36: 424-426, 428, 430 passim.
  10. Lafuente, A., Pajuelo, E., Caviedes, M.A., and Rodriguez-Llorente, I.D. 2010. Reduced nodulation in alfalfa induced by arsenic correlates with altered expression of early nodulins. Journal of Plant Physiology.167:286-291. https://doi.org/10.1016/j.jplph.2009.09.014
  11. Lee, K.-W., Choi, G.J., Kim, K.-Y., Ji, H.J., Park, H.S., Kim, Y.-G., Lee, B.H. and Lee, S.-H. 2012a. Transgenic Expression of MsHsp23 confers enhanced tolerance to abiotic stresses in tall fescue. Asian-Australasian Journal of Animal Sciences. 25:818-823. https://doi.org/10.5713/ajas.2012.12034
  12. Lee, K.-W., Cha, J.-Y., Kim, K.-H., Kim, Y.-G., Lee, B.-H. and Lee, S-H. 2012b. Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress. Biotechnology Letters. 34:167-174. https://doi.org/10.1007/s10529-011-0750-1
  13. Lee,K.-W., Kim, K.-H., Kim, Y.-G, Lee, B.H. and Lee, S.-H. 2012c. Identification of MsHsp23 gene using annealing control primer system. Acta Physiologiae Plantarum. 34:807-811. https://doi.org/10.1007/s11738-011-0853-2
  14. Li, W., Wei, Z., Qiao, Z., Wu, Z., Cheng, L. and Wang, Y. 2013. Proteomics analysis of alfalfa response to heat stress. PLoS ONE 8(12): e82725. https://doi.org/10.1371/journal.pone.0082725
  15. Ma, H., Zhao, H., Liu, Z. and Zhao J. 2011. The phytocyanin gene family in rice (Oryza sativa L.): genome-wide identification, classification and transcriptional analysis. PLoS ONE 6:e25184. https://doi.org/10.1371/journal.pone.0025184
  16. Mandal, B.K. and Suzuki, K.T. 2002. Arsenic round the world: a review. Talanta. 58:201-235. https://doi.org/10.1016/S0039-9140(02)00268-0
  17. Moreno-Jimenez, E., Esteban, E. and Penalosa, J.M. 2012. The fate of arsenic in soil-plant systems. In: Whitacre MD (ed) Reviews of Environmental Contamination and Toxicology. Springer New York, New York, NY. pp 1-37.
  18. Pickering, I.J., Prince, R.C., George, M.J., Smith, R.D., George, G.N. and Salt, D.E. 2000. Reduction and coordination of arsenic in Indian mustard. Plant Physiology. 122:1171-1178. https://doi.org/10.1104/pp.122.4.1171
  19. Porter, J.R. and Sheridan, R.P. 1981. Inhibition of nitrogen fixation in alfalfa by arsenate, heavy metals, fluoride, and simulated acid rain. Plant Physiology. 68:143-148. https://doi.org/10.1104/pp.68.1.143
  20. Rahman, M.A., Alam, I., Kim, Y.-G., Ahn, N.-Y., Heo, S.-H., Lee, D.-G., Liu, G. and Lee, B.-H. 2015. Screening for salt-responsive proteins in two contrasting alfalfa cultivars using a comparative proteome approach. Plant Physiology and Biochemistry 89:112-122. https://doi.org/10.1016/j.plaphy.2015.02.015
  21. Rahman, M.A., Kim Y.-G., Alam, I., Liu, G., Lee, Hyoshin, Lee, J.J. and Lee, B.-H. 2016. Proteome analysis of alfalfa roots in response to water deficit stress. Journal of Integrative Agriculture. 15:1275-1285. https://doi.org/10.1016/S2095-3119(15)61255-2
  22. Takahashi, Y., Minamikawa, R., Hattori, K.H., Kurishima, K., Kihou, N. and Yuita, K. 2004. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ mental Science & Technology. 38:1038-1044. https://doi.org/10.1021/es034383n
  23. Wu, H.Y., Shen, Y., Hu, Y.L., Tan, S.J. and Lin, Z.P. 2011. A phytocyaninrelated early nodulin-like gene, BcBCP1, cloned from Boea crassifolia enhances osmotic tolerance in transgenic tobacco. Journal of Plant Physiology. 168:935-943. https://doi.org/10.1016/j.jplph.2010.09.019

피인용 문헌

  1. Screening of Multiple Abiotic Stress-Induced Genes in Italian Ryegrass leaves vol.38, pp.3, 2018, https://doi.org/10.5333/KGFS.2018.38.3.190