DOI QR코드

DOI QR Code

The thermal effect on electrical capacitance sensor for two-phase flow monitoring

  • Altabey, Wael A. (International Institute for Urban Systems Engineering, Southeast University)
  • 투고 : 2016.06.08
  • 심사 : 2016.09.13
  • 발행 : 2016.12.25

초록

One of major errors in flow rate measurement for two-phase flow using an Electrical Capacitance Sensor (ECS) concerns sensor sensitivity under temperature raise. The thermal effect on electrical capacitance sensor (ECS) system for air-water two-phase flow monitoring include sensor sensitivity, capacitance measurements, capacitance change and node potential distribution is reported in this paper. The rules of 12-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance and sensitivity map the basis of Air-water two-phase flow permittivity distribution and temperature raise are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. The cross-sectional void fraction as a function of temperature is determined from the scripting capabilities in ANSYS simulation. The results show that the temperature raise had a detrimental effect on the electrodes sensitivity and sensitive domain of electrodes. The FE results are in excellent agreement with an experimental result available in the literature, thus validating the accuracy and reliability of the proposed flow rate measurement system.

키워드

참고문헌

  1. Al-Tabey, W.A. (2010), "Effect of pipeline filling material on electrical capacitance tomography", Proceedings of the International Postgraduate Conference on Engineering (IPCE 2010), Perlis, Malaysia, October 16-17.
  2. Al-Tabey, W.A. (2012), Finite Element Analysis in Mechanical Design Using ANSYS: Finite Element Analysis (FEA) Hand Book For Mechanical Engineers With ANSYS Tutorials, LAP Lambert Academic Publishing, Germany, ISBN 978-3-8454-0479-0.
  3. Alme, K.J. and Mylvaganam, S. (2006), "Analyzing 3D and conductivity effects in electrical tomography systems using COMSOL multiphysics EM module", Proceedings of the 2006 Nordic COMSOL Conference.
  4. Altabey, W.A. (2016), "FE and ANN model of ECS to simulate the pipelines suffer from internal corrosion", Struct. Monit. Maint., 3(3), 297-314, DOI: http://dx.doi.org/10.12989/smm.2016.3.3.297.
  5. ANSYS Low-Frequency Electromagnetic analysis Guide, The Electrostatic Module in the Electromagnetic subsection of ANSYS, (2014), ANSYS, inc. Southpointe 275 Technology Drive Canonsburg, PA 15317, Published in the USA.
  6. Asencio, K., Bramer-Escamilla, W., Gutierrez, G. and Sanchez, I. (2015), "Electrical capacitance sensor array to measure density profiles of a vibrated granular bed", Powder Technol., 270, 10-19. https://doi.org/10.1016/j.powtec.2014.10.003
  7. Banerjee, S. and Lahey, R.T. (1981), "Advances in two-phase flow instrumentation", Adv. Nuclear Sci. Technol., 13, 227-414.
  8. Couthard, J. and Yan, Y. (1993), "Ultrasonic cross-correlation flowmeter", Measurement and Control, 26.
  9. Daoye, Y., Bin, Z., Chuanlong, X., Guanghua, T. and Shimin, W. (2009), "Effect of pipeline thickness on electrical capacitance tomography", Proceedings of the 6th International Symposium on Measurement Techniques for Multiphase Flows, J. Phys. Conference Series, 147, 1-13.
  10. Fasching, G.E. and Smith, N.S. (1988), "High resolution capacitance imaging system", US Dept. Energy, 37, DOE/METC-88/4083
  11. Fasching, G.E. and Smith, N.S. (1991), "A capacitive system for 3-dimensional tmaging of fluidized-beds", Rev. Sci. Instr., 62, 2243-2251 https://doi.org/10.1063/1.1142343
  12. Hetsroni, G. (1982), "Hand book of Multiphase Systems", Hemisphere Publishing Corporation and McGraw-Hill, New York.
  13. Huang, S.M., Plaskowski, A.B., Xie, C.G. and Beck, M.S. (1989), "Tomographic imaging of two-flow component flow using capacitance sensor", J. Phys. E : Sci. Instrum., 22,173-177. https://doi.org/10.1088/0022-3735/22/3/009
  14. Jaworski, A.J. and Bolton, G.T. (2000), "The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity", Meas. Sci. Technol., 11(6), 743-757. https://doi.org/10.1088/0957-0233/11/6/318
  15. Kumar, R.A., Cook, R.L., Norton, O.P. and Okhaysen, W.O. (1995), "Laser based cross-correlation technique for the determination of flow velocities in multiphase flows", Proceedings of 1st International Symposium on Measurement Techniques for Multiphase Flows, Nanjing, P.R. China.
  16. Li, H. and Huang, Z. (2000), "Special measurement technology and application", Zhejiang University Press, Hangzhou.
  17. Lynch, G.F. and Segal, S.L. (1977), "Direct measurement of the void fraction of a two-phase fluid by nuclear magnetic resonance", Int. J. Mass Transfer, 20, 7-14. https://doi.org/10.1016/0017-9310(77)90078-3
  18. Mohamad, E.J., Rahim, R.A., Leow, P.L., Fazalul, Rahiman, M.H., Marwah, O.M.F., Nor Ayob, N.M., Rahim, H.A. and Mohd Yunus, F.R. (2012), "An introduction of two differential excitation potentials technique in electrical capacitance tomography", Sensor. Actuat. A, 180, 1-10 https://doi.org/10.1016/j.sna.2012.03.025
  19. Mohamad, E.J., Rahim, R.A., Rahiman, M.H.F., Ameran, H.L.M., Muji, S.Z.M. and Marwah, O.M.F. (2016), "Measurement and analysis of water/oil multiphase flow using electrical capacitance tomography sensor", Flow Meas. Instrum., 47, 62-70. https://doi.org/10.1016/j.flowmeasinst.2015.12.004
  20. Pei, T. and Wang, W. (2009), "Simulation analysis of sensitivity for electrical capacitance tomography", Proceedings of the 9th International Conference on Electronic Measurement & Instruments (ICEMI 2009).
  21. Sardeshpande, M.V., Harinarayan, S. and Ranade, V.V. (2015), "Void fraction measurement using electrical capacitance tomography and high speed photography", J. Chem. Eng. Res. Des., 9(4), 1-11.
  22. Thorn, R., Johansen, G.A. and Hammer, E.A. (1997), "Recent developments in three-phase flow measurement", Meas. Sci. Technol., 8, 691-701. https://doi.org/10.1088/0957-0233/8/7/001
  23. Thorn, R., Johansen, G.A. and Hammer, E.A. (1999), "Three-phase flow measurement in the offshore oil industry-is there a place for process tomography?", Proceedings of the 1st World Congress on Industrial Process Tomography, Buxton, UK.
  24. Xie, C.G., Huang, S.M., Hoyle, B.S., Thorn, R., Lenn, C., Snowden, D. and Beck, M.S. (1992), "Electrical capacitance tomography for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors", IEEE Proceedings-G, 139(1), 89-98.
  25. Yang, W.Q. (1997), "Modelling of capacitance sensor", IEEE proceedings: Measurement Science and Technology, 144(5), 203-208. https://doi.org/10.1049/ip-smt:19971425
  26. Yang, W.Q. and York, T.A., (1999), "New AC-based capacitance tomography system", IEEE proceedings: Measurement Science and Technology, 146(1), 47-53. https://doi.org/10.1049/ip-smt:19990008
  27. Yang, W.Q., Beck, M.S. and Byars, M. (1995b), "Electrical capacitance tomography -from design to applications", Measure. Control, 28(9), 261-266 https://doi.org/10.1177/002029409502800901
  28. Yang, W.Q., Stott, A.L., Beck, M.S. and Xie, C.G. (1995a), "Development of capacitance tomographic imaging systems for oil pipeline measurements", Rev. Sci. Instrum., 66(8), 4326 https://doi.org/10.1063/1.1145322
  29. Zhang, W., Wang, C., Yang, W. and Wang, C. (2014), "Application of electrical capacitance tomography in particulate process measurement - A review", J. Adv. Powder Technol., 25, 174-188. https://doi.org/10.1016/j.apt.2013.12.003

피인용 문헌

  1. Detection of Fatigue Crack in Basalt FRP Laminate Composite Pipe using Electrical Potential Change Method vol.842, 2017, https://doi.org/10.1088/1742-6596/842/1/012079
  2. Fatigue damage identification for composite pipeline systems using electrical capacitance sensors vol.27, pp.8, 2018, https://doi.org/10.1088/1361-665X/aacc99
  3. Detecting and predicting the crude oil type inside composite pipes using ECS and ANN vol.3, pp.4, 2016, https://doi.org/10.12989/smm.2016.3.4.377
  4. Delamination evaluation on basalt FRP composite pipe by electrical potential change vol.4, pp.5, 2017, https://doi.org/10.12989/aas.2017.4.5.515
  5. Monitoring the water absorption in GFRE pipes via an electrical capacitance sensors vol.5, pp.4, 2016, https://doi.org/10.12989/aas.2018.5.4.499
  6. Identification of cracks in an Euler-Bernoulli beam using Bayesian inference and closed-form solution of vibration modes vol.235, pp.2, 2021, https://doi.org/10.1177/1464420720969719
  7. Applying deep learning and wavelet transform for predicting the vibration behavior in variable thickness skew composite plates with intermediate elastic support vol.23, pp.4, 2016, https://doi.org/10.21595/jve.2020.21480