DOI QR코드

DOI QR Code

Energy-efficient Channel Allocation MAC for Wearable WBANs

웨어러블 WBANs를 위한 에너지 효율적인 채널할당 MAC

  • 이정재 (송원대학교 컴퓨터정보학과) ;
  • 김인환 (송원대학교 전기전자공학과)
  • Received : 2016.09.23
  • Accepted : 2016.11.24
  • Published : 2016.11.30

Abstract

The main challenge in designing wearable WBANs is to guarantee the balance of QoS demands in the network with the low power constraints of limited battery powered nodes. Low power devices implanted in or attached to the body should be designed to meet minimum energy requirements due to their limited battery life and be small in size to be easily wearable. In this paper, we propose a method for optimizing channel allocation method that is compatible with the IEEE 802.15.6 standard, enables the maximum amount of power charge at idle, guarantees the QoS of a WBAN, and provides the reliable date transmission between nodes and hubs in the network. Our extensive simulations will show that the method we propose not only maximizes the QoS in packet transmission but also improves the level of energy efficiency.

웨어러블 WBAN을 설계하는데 있어서 중요한 문제는 한정된 전지의 동력을 가지는 노드들의 저-전력 제약사항을 갖는 네트워크에서 QoS 요구사항의 균형을 보장하는 것이다. 인체에 이식된 저-전력 장치들은 그들의 한정된 전지수명으로 인해 최소한의 요구사항으로 제한되고 쉽게 착용할 수 있도록 적고 슬림해야 한다. 본 논문에서는 IEEE 802.15.6과 호환이 가능하고 휴지사이클 동안 에너지를 최대한 충전하며 WBAN의 QoS를 보장하고 네트워크 노드와 허브 들 간에 성공적인 패킷들의 수신을 제공하는 채널할당최적기법을 제안하고자 한다. 시뮬레이션을 통해서 제안된 방법은 패킷 전달과정에서 QoS를 극대화 하며 전송률과 에너지 효율 측면에서 향상됨을 보인다.

Keywords

References

  1. United Nations-Department of Economic and social Affairs, Population Division; World Population Aging 2013; Technical Report, ST/ESA/SER.A/348; United Nation Publication: New York, NY, USA, 2013.
  2. J. Lee and J. Hong, "Performance Improvement of IEEE 802.15.4 MAC for WBAN Environments in Medical," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 1, 2015, pp. 1-6. https://doi.org/10.13067/JKIECS.2015.10.1.1
  3. J. Lee and I. Kim, "A Study on the CSMA/CA Performance Improvement Based on IEEE 802.15.6," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 11, 2015, pp. 1225-1230. https://doi.org/10.13067/JKIECS.2015.10.11.1225
  4. S. Park, "Joint Control of Duty Cycle and Beacon Tracking in IEEE 802.15.4 LR-WPAN," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 1, 2016, pp. 9-16. https://doi.org/10.13067/JKIECS.2016.11.1.9
  5. Marinkovic, S., Popovici, E., Spagnol, C., Faul, and S., Marnane, W, "Energy-efficient Low Duty Cycle MAC Protocol for WBA," IEEE Trans. on Info. Tech. in Biomed. vol. 13, no. 6, 2009, pp. 915-925. https://doi.org/10.1109/TITB.2009.2033591
  6. Kartsakli, E., Antonopoulos, A., S. Lalos, a., Tennina S., Renzo, M., Alonso, and l., Verikoukis, C., "Reliable MAC Design for Ambient Assisted Living," IEEE Commun. Mag. 53. 2015, pp. 78-86.
  7. Li, C., Hao, B., Zhang, K., Liu, Y., and Li, J, "A Novel Medium Access Control Protocol with Low Delay and Traffic Adaptivity for Wireless Body Area Networks," J. Med. Syst. 35, 2011, pp. 1265-1275. https://doi.org/10.1007/s10916-011-9682-5
  8. Ameen, M., Liu, J., Ullah, S., Kwak, and K.S, "A Power Efficient MAC Protocol for Implant Device Communication in Wireless Body Area Networks," In Proc. IEEE Consumer Communication and Networking Conf.(CCNC 2011), LasVegas, NV, USA, Jan. 2011, pp. 1155-1160.
  9. Jelicic, V., Magno, M., Brunelli, D., Bilas, V., and Benini, L, "Benefits of Wake-up Radio in Energy-Efficient Multimodel Surveillance Wireless Sensor Network," IEEE Sens. J. 14, 2014, pp. 3210-3220. https://doi.org/10.1109/JSEN.2014.2326799
  10. Chen H., Nie Z., Ivanov K., Wang L., Liu R, "A Statistical LMAC Protocol for Heterogeneous Traffic Human Body Communication." In Proc. of the IEEE Int. Sym. Circuits and Systems(ISCAS 2013), Beijing, China, May 2013, pp. 2275-2278.
  11. Wang, L,, Li, C., Li, J., Zhen, B., Li, H.B., and Kohno, R, "Scalable and Robust Medium Access Control in Wireless Body Area Networks," In Proc. of the IEEE 20th Int. Sym. Personal, Indoor Mobile Radio Communications (PIMRC 2009), Tokyo, Japan, 13-16, Sept. 2009, pp. 2127-2131.
  12. C. Jerlin and W. Heinzelman, "Duty Cycle for Low-Power-Listening MAC Protocols," IEEE Trans. on Mobile Computing, vol. 9, no. 11, 2010, pp. 1508-1521. https://doi.org/10.1109/TMC.2010.116
  13. Li, J., Cai, X., Yean, J., Zhu, and W., Wu, "Energy aware Adaptive Topology Adjustment in Wireless Body Area Networks," Telecommun. Syst. 58, 2015, pp. 139-152. https://doi.org/10.1007/s11235-014-9899-y
  14. Moser, C., Brunelli, D., Thiele, L., and Benini, L, "Real-time Scheduling for Energy Harvesting Sensor node," Real-Time Syst. 37, 2007, pp. 233-260. https://doi.org/10.1007/s11241-007-9027-0
  15. Seyedi, A. and Sikdar, B, "Energy Efficient Transmission Strategies for Body Sensor Networks with Energy Harvesting," IEEE Trans. Communication. 58, 2010, pp. 2116-2126. https://doi.org/10.1109/TCOMM.2010.07.080544
  16. Leonov, V, "Thermoelectric Energy Harvesting of Human Body Heat for Wearable Sensors," IEEE S. J. 13, 2013, pp. 2284-2291. https://doi.org/10.1109/JSEN.2013.2252526