DOI QR코드

DOI QR Code

Traffic Estimation Method for Visual Sensor Networks

비쥬얼 센서 네트워크에서 트래픽 예측 방법

  • Park, Sang-Hyun (Dept. of Multimedia Engineering, Sunchon National University)
  • 박상현 (순천대학교 멀티미디어공학과)
  • Received : 2016.10.04
  • Accepted : 2016.11.24
  • Published : 2016.11.30

Abstract

Recent development in visual sensor technologies has encouraged various researches on adding imaging capabilities to sensor networks. Video data are bigger than other sensor data, so it is essential to manage the amount of image data efficiently. In this paper, a new method of video traffic estimation is proposed for efficient traffic management of visual sensor networks. In the proposed method, a first order autoregressive model is used for modeling the traffic with the consideration of the characteristics of video traffics acquired from visual sensors, and a Kalman filter algorithm is used to estimate the amount of video traffics. The proposed method is computationally simple, so it is proper to be applied to sensor nodes. It is shown by experimental results that the proposed method is simple but estimate the video traffics exactly by less than 1% of the average.

최근 비쥬얼 센서 기술의 발달로 센서 네트워크에 영상을 추가하기 위한 다양한 연구가 진행되고 있다. 비쥬얼 센서는 다른 센서 정보에 비해 데이터가 크기 때문에 데이터의 크기를 효율적으로 관리하는 것이 무엇보다 중요하다. 본 논문에서는 효과적인 데이터 관리에 필요한 비디오 트래픽 예측 방법을 제안한다. 제안하는 방법은 비디오 센서에서 획득되는 영상의 특성을 반영하여 1차 AR 모델로 비디오 트래픽을 모델링하고 칼만필터 알고리즘을 적용하여 트래픽을 예측한다. 제안하는 방법은 계산량이 많지 않아 센서 노드에 적용되기 적합하다. 실험 결과는 제안하는 방법이 비교적 간단한 형태이지만 전체 평균 트래픽의 1% 이내로 오차로 정확하게 트래픽을 예측하는 것을 보여준다.

Keywords

References

  1. B. Tavli, K. Bicakci, R. Zilan, and J. Barcelo-Ordinas, "A survey of visual sensor network platforms," Multimededia Tools and Applications, vol. 60, no. 3, 2012, pp. 689-726. https://doi.org/10.1007/s11042-011-0840-z
  2. J. Zhang, Q. Xiang, Y. Yin, C. Chen, and X. Luo, "Adaptive compressed sensing for wireless image sensor networks," Multimedia Tools and Applications, vol. 64, 2016, pp. 1-16.
  3. K. Nam, "A Study on Yeong-sna River Ecological Environment Monitoring based on IoT," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 2, 2015, pp. 203-210. https://doi.org/10.13067/JKIECS.2015.10.2.203
  4. P. Porambage, A. Heikkinen, E. Harjula, A. Gurtov, and M. Ylianttila, "Quantitative Power Consumption Analysis of a Multi-tier Wireless Multiemedia Sensor Network," In Proc. European Wireless 2016, Oulu, Finland, May 2016, pp. 1-6.
  5. J. Park, S. Lee, and W. Oh, "Congestion Control Mechanism for Efficient Network Environment in WMSN," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 2, 2015, pp. 289-296. https://doi.org/10.13067/JKIECS.2015.10.2.289
  6. K. Lee, Y. Kim, and H. Lee, "Receive Prediction based Period Adaptive Wakeup Technique for WSN," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 11, 2015, pp. 1265-1270. https://doi.org/10.13067/JKIECS.2015.10.11.1265
  7. T. Little, J. Konrad, and P. Ishwar, "A wireless video sensor network for autonomous coastal sensing," In Proc. Conf. on Coastal Environmental Sensing Networks, Boston, USA, Apr. 2007, pp. 1-5.
  8. M. Chen, S. Gonzalez, H. Cao, Y. Zhang, and S. Vuong, "Enabling low bit-rate and reliable video surveillance over practical wireless sensor network," The J. of Supercomputing, vol. 65, no. 1, 2013, pp. 287-300. https://doi.org/10.1007/s11227-010-0475-2
  9. G. Kirchgassner, J. Wolters, and U. Hassler, Introduction to modern time series analysis. Berlin: Germany:Springer Science & Business Media, 2012.
  10. D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches. Hoboken, Jew Jersey: John Wiley & Sons, 2006.