ON SEMIDERIVATIONS OF NEAR-RINGS

Kyung Ho Kim*

Abstract

In this paper, we introduce the notion of a semiderivation on near-rings, and we try to generalize some properties of prime rings with derivations to prime near-rings with semiderivations.

1. Introduction

J. C. Chang [7] studied on semiderivations of prime rings. He obtained some results of derivations of prime rings into semiderivations. H. E. Bell and W. S. Martindale III [1] investigated the commutativity property of a prime ring by means of semiderivations. C. L. Chuang [8] studied on the structure of semiderivations in prime rings. He obtained some remarkable results in connection with semiderivations. J. Bergen and P. Grzesczuk [3] obtained the commutatity properties of semiprime rings with the help of skew(semi)-derivations. A. Firat [9] generalized some results of prime rings with derivations to the prime rings with semiderivations. In this paper, we introduce the notion of a semiderivation on near-rings, and we try to generalize some properties of prime rings with derivations to prime near-rings with semiderivations.

2. Preliminaries

In this section, we include some elementary aspects that are necessary for this paper.

By a near-ring we mean a non-empty set N with two binary operations " + " and "." satisfying the following axioms:
(a) $(N,+)$ is a group,

[^0](b) (N, \cdot) is a semigroup,
(c) $x \cdot(y+z)=x \cdot y+x \cdot z$ for all $x, y, z \in N$.

Precisely speaking, it is a left near-ring because it satisfies the left distributive law. We will use the word "near-ring" in stead of "left nearring". We denote $x y$ instead of $x \cdot y$. Note that $x 0=0$ and $x(-y)=-x y$ but in general $0 x \neq 0$ for some $x \in N$. Let N be a near-ring. Then
N is said to be prime if $a N b=0$ implies $a=0$, or $b=0$ for all $a, b \in N . N$ is said to be 2-torsion free if $2 a=0$ implies $a=0$ for all $a \in N$.

For any $x, y \in N,[x, y], x \circ y$ represent $x y-y x, x y+y x$ respectively. The symbol $Z(N)$ represent the multiplicative center of N, that is, $Z(N)=\{x \in N \mid x y=y x$ for all $y \in N\}$. A mapping $f: N \rightarrow N$ is said to be it commuting on N if $[f(x), x]=0$ for all $x \in N$ and is said to be centralizing on N if $[f(x), x] \in Z(N)$ for all $x \in N$. Let N be a near-ring. An additive mapping $f: N \rightarrow N$ is called a derivation if

$$
f(x y)=f(x) y+x f(y)
$$

for all $x, y \in N$.

3. Semiderivations of prime near-rings

In what follows, let N denote a near-ring with center $Z(N)$ unless otherwise specified.

Definition 3.1. Let N be a near-ring. An additive mapping f : $N \rightarrow N$ is called a semiderivation associated with a surjective function $g: N \rightarrow N$ if
(a) $f(x y)=f(x) g(y)+x f(y)=f(x) y+g(x) f(y)$,
(b) $f(g(x))=g(f(x))$, for all $x, y \in N$.

If $g=I$, i.e., an identity mapping of N, then all semiderivations associated with g are merely ordinary derivations. If g is any endomorphism, then semiderivations are of the form $f(x)=x-g(x)$.

Example 3.2. Let N_{1} and N_{2} be two semiprime near-rings and $N=$ $N_{1} \bigoplus N_{2}$. If $\alpha_{1}: N_{1} \rightarrow N_{1}$ be an additive map, $\alpha_{2}: N_{2} \rightarrow N_{2}$ be a left and right N_{2} module map, which is not a derivation. Define a mapping $f: N \rightarrow N$ such that $f\left(\left(r_{1}, r_{2}\right)\right)=\left(0, \alpha_{2}\left(r_{2}\right)\right)$ and $g: N \rightarrow N$ such that $g\left(\left(r_{1}, r_{2}\right)\right)=\left(\alpha_{1}\left(r_{1}\right), 0\right)$, where $r_{1} \in N_{1}, r_{2} \in N_{2}$. Define addition and multiplication on N by $\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$ and $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}, b_{1} b_{2}\right)$ for all $a_{1}, a_{2} \in N_{1}, b_{1}, b_{2} \in N_{2}$. Then it can
be easily verified that f is a semiderivations on N, with associated map g which is not a derivation.

We begin with the following lemma, which is essential in developing the proof of our main result.

Lemma 3.3. Let N be a prime near-ring and $a \in N$. If f is a nonzero semiderivation associated with a surjective function $g: N \rightarrow N$. If $a f(N)=0$, then $a=0$.

Proof. Suppose that $a f(N)=0$ and $x \in N$. Since $f \neq 0$, there is $y \in N$ such that $f(y) \neq 0$, and

$$
a f(x y)=0 .
$$

Hence we obtain

$$
\begin{equation*}
a(f(x) g(y)+x f(y))=a f(x) g(y)+a x f(y)=0 \tag{3.1}
\end{equation*}
$$

Since $a f(x)=0$, we have $a x f(y)=0$ for every $x \in N$. Since N is prime and $f(y) \neq 0$, we get $a=0$.

Lemma 3.4. Let N be a prime near-ring and f be a semiderivation associated with a surjective function $g: N \rightarrow N$. Then

$$
(f(x) g(y)+x f(y)) z=f(x) g(y) z+x f(y) z
$$

for all $x, y, z \in N$.
Proof. For any $x, y \in N$, we have

$$
\begin{aligned}
f((x y) z) & =f(x y) g(z)+x y f(z) \\
& =(f(x) g(y)+x f(y)) g(z)+x y f(z) \\
& =(f(x) g(y)+x f(y)) z+x y f(z) \quad(g \text { is onto })
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
f(x(y z)) & =f(x) g(y z)+x f(y z) \\
& =f(x) g(y z)+x f(y) g(z)+x y f(z) \\
& =f(x) g(y) z+x f(y) z+x y f(z) \quad(g \text { is onto })
\end{aligned}
$$

Combining both expressions of $f(x y z)$, we have

$$
(f(x) g(y)+x f(y)) z=f(x) g(y) z+x f(y) z
$$

for all $x, y, z \in N$.
Lemma 3.5. ([4]) Let N be a 2-torsion free prime near-ring and let f be a nonzero semiderivation associated with a surjective function g : $N \rightarrow N$. If $f(N) \subseteq Z(N)$, then N is commutative.

Proposition 3.6. Let N be a prime near-ring. If N admits a nonzero semiderivation f with g such that $f(x \circ y)=x \circ y$ for all $x, y \in N$, then N is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
f(x \circ y)=x \circ y, \quad \forall x, y \in N . \tag{3.2}
\end{equation*}
$$

Replacing y by $x y$ in (3.2), we get

$$
\begin{equation*}
f(x \circ(x y))=x^{2} y+x y x, \quad \forall x, y \in N . \tag{3.3}
\end{equation*}
$$

Since $x \circ(x y)=x(x \circ y)$, we obtain

$$
f(x \circ(x y))=f(x) g(x \circ y)+x f(x \circ y) \text {, for all } x, y \in N \text {. }
$$

By the equation (3.2), we get

$$
x \circ(x y)=f(x)(x \circ y)+x(x \circ y) \text {, for all } x, y \in N .
$$

Hence $f(x)(x \circ y)=0$ for all $x, y \in N$. This implies

$$
\begin{equation*}
f(x) x y=-f(x) y x, \quad \forall x, y \in N . \tag{3.4}
\end{equation*}
$$

Substituting $y z$ for y in (3.4), we obtain for all $x, y \in N$,

$$
\begin{equation*}
-f(x) y z x=f(x) x y z=(-f(x) y x) z=f(x) y(-x) z \tag{3.5}
\end{equation*}
$$

Since $-f(x) y z x=f(x) y(-x) z$, (3.5) becomes

$$
\begin{equation*}
f(x) y z(-x)=f(x) y(-x) z, \quad \forall x, y \in N . \tag{3.6}
\end{equation*}
$$

Taking $-x$ instead of x in (3.6), we obtain

$$
\begin{equation*}
f(-x) y z x=f(-x) y x z, \quad \forall x, y \in N . \tag{3.7}
\end{equation*}
$$

Hence $f(-x) y(z x-x z)=0$ and so

$$
\begin{equation*}
f(-x) N[z, x]=0, \quad \forall x, y \in N . \tag{3.8}
\end{equation*}
$$

By primeness, we have either $x \in Z(N)$ or $f(-x)=0$. That is,

$$
\begin{equation*}
f(x)=0 \text { or }[x, z]=0, \quad \forall x, y \in N . \tag{3.9}
\end{equation*}
$$

From (3.9), it follows that for each fixed $x \in N$, we have

$$
\begin{equation*}
f(x)=0 \text { or } x \in Z(N) . \tag{3.10}
\end{equation*}
$$

But $x \in Z(N)$ also implies that $f(x) \in Z(N)$, and so the equation (3.8) forces to

$$
\begin{equation*}
f(x) \in Z(N), \quad \forall x, y \in N . \tag{3.11}
\end{equation*}
$$

In light of (3.11), $f(N) \subset Z(N)$ and using Proposition 3.5, we conclude that N is commutative.

THEOREM 3.7. Let N be a prime near-ring. If N admits a nonzero semiderivation f with g such that $f(x \circ y)=-(x \circ y)$ for all $x, y \in N$, then N is commutative.

Proof. By hypothesis,

$$
\begin{equation*}
f(x \circ y)=-(x \circ y), \quad \forall x, y \in N \tag{3.12}
\end{equation*}
$$

Replacing y by $x y$ in (3.12), we have, for all $x, y \in N$,

$$
\begin{gathered}
f(x \circ x y)=-(x \circ x y) \\
f(x(x \circ y))=-x(x \circ y) .
\end{gathered}
$$

Hence we have $f(x) g(x \circ y))+x f(x \circ y)=-x(x \circ y)$. Using (3.12) in the above equation (3.12) and g is onto, we get

$$
f(x)(x \circ y)=0
$$

for all $x, y \in N$. The rest of the proof is as in the proof Theorem 3.6.
Theorem 3.8. Let N be a prime near-ring. If N admits a nonzero semiderivation f with g such that $f(x) \circ y=x \circ y$ for all $x, y \in N$, then N is commutative.

Proof. Suppose that

$$
\begin{equation*}
f(x) \circ y=x \circ y, \quad \forall x, y \in N \tag{3.13}
\end{equation*}
$$

Replacing x by $x y$ in (3.13), we get

$$
f(x y) \circ y=x y \circ y=(x \circ y) y
$$

Using the equation (3.13), we get $f(x y) \circ y=(f(x) \circ y) y$, and so

$$
f(x y) y+y f(x y)=f(x) y^{2}+y f(x) y
$$

and

$$
f(x) g(y) y+x f(y) y+y f(x) g(y)+y x f(y)=f(x) y^{2}+y f(x) y
$$

Hence we have

$$
f(x) y^{2}+x f(y) y+y f(x) y+y x f(y)=f(x) y^{2}+y f(x) y
$$

since g is onto. Therefore we obtain $x f(y) y+y x f(y)=0$ for all $x, y \in N$, and so

$$
\begin{equation*}
y x f(y)=-x f(y) y, \quad \forall x, y \in N \tag{3.14}
\end{equation*}
$$

Replacing x by $x z$ in the equation (3.14), we get for all $x, y \in N$,

$$
\begin{aligned}
y x z f(y) & =-x z f(y) y=-x(z f(y) y) \\
& =-x(-y z f(y))=-x(-y) z f(y)
\end{aligned}
$$

The last expression reduced to

$$
\begin{equation*}
y x z f(y)=-x(-y) z f(y), \quad \forall x, y \in N \tag{3.15}
\end{equation*}
$$

Since $-y x z f(y)=(-y) x z f(y)$, we have

$$
\begin{equation*}
(-y) x z f(y)=x(-y) z f(y), \quad \forall x, y \in N \tag{3.16}
\end{equation*}
$$

Taking $-y$ instead of y in (3.16), we get $y x z f(-y)=x y z f(-y)$ for all $x, y \in N$. Hence $(y x-x y) z f(-y)=0$, and so $[y, x] z f(-y)=0$, that is,

$$
\begin{equation*}
[y, x] N f(-y)=0, \quad \forall x, y \in N \tag{3.17}
\end{equation*}
$$

By primeness, we have either $y \in Z(N)$ or $f(-y)=0$ for all $y \in N$.
Accordingly,

$$
\begin{equation*}
f(y)=0 \text { or } y \in Z(N), \quad \forall y \in N \tag{3.18}
\end{equation*}
$$

But $y \in Z(N)$ also implies that $f(y) \in Z(N)$, and so the equation (3.17) forces to

$$
\begin{equation*}
f(y) \in Z(N), \quad \forall y \in N \tag{3.19}
\end{equation*}
$$

In light of (3.19), $f(N) \subset Z(N)$ and using Proposition 3.5, we conclude that N is commutative.

Theorem 3.9. Let N be a prime near-ring. If N admits a nonzero semiderivation f with g such that $f(x \circ y)=[x, y]$ for all $x, y \in N$, then N is commutative.

Proof. Let

$$
\begin{equation*}
f(x \circ y)=[x, y], \quad \forall x, y \in N . \tag{3.20}
\end{equation*}
$$

Replacing y by $y x$ in (3.20), we obtain

$$
f((x \circ y) x)=[x, y] x .
$$

Hence we have

$$
f(x \circ y) g(x)+(x \circ y) f(x)=[x, y] x .
$$

Since g is onto and by (3.20), we get

$$
\begin{equation*}
(x \circ y) f(x)=0, \quad \forall x, y \in N \tag{3.21}
\end{equation*}
$$

Replacing y by $z y$ in (3.21), we obtain $(x(z y)+(z y) x) f(x)=0$ for all $x, y, z \in N$. Now, application of (3.21) yields $y x f(x)=-x y f(x)$. Combining this fact with the latter relation, we have $x z+z(-x)) y f(x)=$ 0 for all $x, y, z \in N$. This implies that $[x, z] y f(x)=0$ for all $x, y, z \in N$. That is,

$$
\begin{equation*}
[x, z] N f(x)=0, \quad \forall x, y \in N \tag{3.22}
\end{equation*}
$$

Since N is a prime near-ring, for each $x \in N$, we have either $f(x)=0$ or $x \in Z(N)$ for all $x \in N$. But $x \in Z(N)$ also implies that $f(x) \in Z(N)$, and so the equation (3.22) forces to

$$
\begin{equation*}
f(x) \in Z(N), \quad \forall x, y \in N \tag{3.23}
\end{equation*}
$$

In light of (3.23), $f(N) \subset Z(N)$ and using Proposition 3.5, we conclude that N is commutative.

Theorem 3.10. Let N be a prime near-ring. If N admits a nonzero semiderivation f with g such that $f[x, y]=x \circ y$ for all $x, y \in N$, then N is commutative.

Proof. Let

$$
\begin{equation*}
f([x, y])=x \circ y, \quad \forall x, y \in N . \tag{3.24}
\end{equation*}
$$

Replacing y by $y x$ in (3.24), we get, for all $x, y \in N$,

$$
f([x, y] x)=(x \circ y) x
$$

and so we obtain

$$
f([x, y]) g(x)+[x, y] f(x)=(x \circ y) x
$$

Since g is onto and using the equation (3.24), we get

$$
\begin{equation*}
[x, y] f(x)=0 \tag{3.25}
\end{equation*}
$$

Replacing y by $y z$ in (3.25), we obtain

$$
\begin{equation*}
[x, y] N f(x)=0, \quad \forall x, y \in N \tag{3.26}
\end{equation*}
$$

Since N is a prime near-ring, for each $x \in N$, we have either $f(x)=0$ or $x \in Z(N)$ for all $x \in N$. But $x \in Z(N)$ also implies that $f(x) \in Z(N)$, and so the equation (3.26) forces to

$$
\begin{equation*}
f(x) \in Z(N), \quad \forall x, y \in N \tag{3.27}
\end{equation*}
$$

In light of (3.27), $f(N) \subset Z(N)$ and using Proposition 3.5, we conclude that N is commutative.

Proposition 3.11. Let N be a 2-torsion free prime near-ring and let f is a semiderivation associated with a surjective function $g: N \rightarrow N$. If $f^{2}(x)=0$ for all $x \in N$, then $f=0$.

Proof. By hypothesis, we have for all $x \in N$,

$$
f^{2}(x)=0
$$

Replacing x by $x y$ in the above equation, we obtain $f^{2}(x y)=0$ for all $x, y \in N$. Hence, for any $x, y \in N$,

$$
\begin{aligned}
0 & =f(f(x y)) \\
& =f(f(x) g(y)+x f(y)) \\
& =f^{2}(x) g(g(y))+f(x) f(g(y))+f(x) g(f(y))+x f^{2}(y) \\
& =2 f(x) f(g(y))
\end{aligned}
$$

Since N is 2-torsion free and g is surjective, we have $f(x) f(y)=0$ for all $x, y \in N$. Replacing y by $y z$, we get for all $x, y, z \in N$,

$$
\begin{aligned}
0 & =f(x) f(y z) \\
& =f(x) f(y) g(z)+f(x) y f(z) \\
& =f(x) y f(z) .
\end{aligned}
$$

Hence we obtain $f(x) s f(z)=0$ for all $x, z \in N$. since N is prime, $f(x)=0$ or $f(z)=0$ for all $x, z \in N$. That is, in both cases, $f=0$.

References

[1] H. E. Bell. and W. S. Martindale III, Semiderivations and commutatity in prime rings, Canad. Math. 31 (1988), no. 4, 500-5008.
[2] J. Bergen, Derivations in prime rings, Canad. Math. 26 (1983), 267-270.
[3] J. Bergen and P. Grzesczuk, Skew derivations with central invariants, J. London Math. Soc. 59 (1999), no. 2, 87-99.
[4] A. Boua and L. Oukhtite, Semiderivations satisfying certain algebraic identities on prime rings, Asian-European Journal of Mathematics, 6 (2013), no. 3, 8.
[5] M. Bresar, On a generalizationof the notion of centralizing mappings, Proc. Amer. Math. Soc. 114 (1992), 641-649.
[6] M. Bresar, Semiderivations of prime rings, Proc. Amer. Math. Soc. 108 (1990), no. 4, 859-860.
[7] J. C. Chang, On semiderivations of prime rings, Chinese J. Math Soc. 12 (1984), 255-262.
[8] C. L. Chuang, On the structure of semiderivations in prime rings, Proc. Amer. Math. Soc. 108 (1990), no. 4, 867-869.
[9] A. Firat, Some results for semiderivations of prime rings, International J. of pure and Applied Mathematics 28 (1990), no. 3, 363-368.
*
Department of Mathematics
Korea National University of Transportation
Chungju 380-702, Republic of Korea
E-mail: ghkim@ut.ac.kr

[^0]: Received September 01, 2016; Accepted October 20, 2016.
 2010 Mathematics Subject Classification: Primary 03G25, 06B10, 06D99, 06B35, 06B99.

 Key words and phrases: near-rings, semiderivation, prime, 2-torsion free, commutative.

 This work is supported by Korea National University of Transportation in 2016.

