ON PC^* -CLOSED SETS

ERDAL EKICI* AND A. NUR TUNÇ**

ABSTRACT. In this paper, the concept of PC^* -closed sets is introduced. PC^* -closed sets contain pre_I^* -open and pre_I^* -closed sets, \mathcal{RPC}_I and pre_I^* -closed sets, \mathcal{RPC}_I and weakly I_{rg} -closed sets.

1. Preliminaries

In many papers, main characterizations of the problems with sets in topology were studied, for example [4, 6, 7, 8, 11, 13]. In 2011, the concept of pre_I^* -open sets was introduced [5]. Pre_I^* -open sets and pre_I^* -closed sets were used for main characterizations of the problems [3, 5]. After then, in 2015, pre_I^* -open and pre_I^* -closed sets were considered to establish some decompositions and also some characterizations [2]. In this paper, PC^* -closed sets are introduced. PC^* -closed sets contain pre_I^* -open and pre_I^* -closed sets, \mathcal{RPC}_I and pre_I^* -closed sets, \mathcal{RPC}_I and weakly I_{rq} -closed sets.

Let (X, ρ) be a topological space and $U \subset X$. The notation $\mathfrak{cl}(U)$ stands for the closure of U and the notation $\mathfrak{int}(U)$ stands for the interior of U.

A family \mathfrak{I} of subsets of a nonempty set X is said to be an ideal [10] if (1) if $V \in \mathfrak{I}$ and $U \subset V$, then $U \in \mathfrak{I}$, (2) if $U, V \in \mathfrak{I}$, then $U \cup V \in \mathfrak{I}$.

 (X, ρ, \mathfrak{I}) represent an ideal topological space where (X, ρ) is a topological space with an ideal \mathfrak{I} [10]. Let (X, ρ) be a topological space with an ideal \mathfrak{I} and $U \subset X$. $U^* = \{x \in X : U \cap V \notin \mathfrak{I} \text{ for each } V \in \rho \text{ such that } x \in V\}$ is said to be the local function of U with respect to \mathfrak{I} and ρ [10]. It is known that $\mathfrak{cl}^*(U) = U \cup U^*$ defines a Kuratowski closure operator for ρ^* [9].

Received June 30, 2016; Accepted October 13, 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 54A10, 54A05.

Key words and phrases: PC^* -closed set, PC^* -open set, pre_I^* -open, pre_I^* -closed, \mathcal{RPC}_I -set, weakly I_{rq} -closed set, pre_I^* -clopen.

Correspondence should be addressed to Erdal Ekici, eekici@comu.edu.tr.

DEFINITION 1.1. Let U be a subset of (X, ρ, \mathfrak{I}) . U is called

- (1) a $\operatorname{pre}_{I}^{*}$ -open set [5] if $U \subset \operatorname{int}^{*}(\mathfrak{cl}(U))$,
- (2) a $\operatorname{pre}_{I}^{*}$ -closed set [3, 5] if $X \setminus U$ is $\operatorname{pre}_{I}^{*}$ -open,
- (3) a $\operatorname{pre}_{I}^{*}$ -clopen set [2] if U is $\operatorname{pre}_{I}^{*}$ -open and $\operatorname{pre}_{I}^{*}$ -closed.

A subset U of (X, ρ) is called semiopen [12] if $U \subset \mathfrak{cl}(\mathfrak{int}(U))$. The complement of a semiopen subset of X is said to be semi-closed [1]. A subset U of (X, ρ) is called regular open [14] if $U = \mathfrak{int}(\mathfrak{cl}(U))$.

DEFINITION 1.2. Let U be a subset of (X, ρ, \mathfrak{I}) . U is called

- (1) an \mathcal{RPC}_I -set [2] if there exist a regular open set V_1 and a pre_I^* -clopen set V_2 in X such that $U = V_1 \cap V_2$,
- (2) a weakly I_{rg} -closed set [3] if $(\mathfrak{int}(U))^* \subset V$ whenever $U \subset V$ and V is a regular open set in X.

THEOREM 1.3. ([2]) Let U be a subset of (X, ρ, \mathfrak{I}) . The following are equivalent for U:

- (1) U is a pre $_I^*$ -clopen set in X,
- (2) U is an \mathcal{RPC}_I -set and a pre_I^* -closed set in X,
- (3) U is an \mathcal{RPC}_I -set and a weakly I_{rq} -closed set in X.

2. PC^* -closed sets and pre_I^* -clopen sets

In this Section, PC^* -closed sets are introduced. PC^* -closed sets contain pre_I^* -open and pre_I^* -closed sets, \mathcal{RPC}_I and pre_I^* -closed sets, \mathcal{RPC}_I and weakly I_{rq} -closed sets.

DEFINITION 2.1. Let U be a subset of (X, ρ, \mathfrak{I}) . U is called PC^* -closed if $\mathfrak{cl}^*(\mathfrak{int}(U)) \setminus \mathfrak{int}^*(\mathfrak{cl}(V)) \in \mathfrak{I}$ for every semiopen set V such that $U \subset V$.

THEOREM 2.2. Let U be a subset of (X, ρ, \mathfrak{I}) . U is PC^* -closed if and only if $(\operatorname{int}(U))^* \setminus \operatorname{int}^*(\mathfrak{cl}(V)) \in \mathfrak{I}$ for every semiopen set V such that $U \subset V$.

Proof. (\Rightarrow): Let U be a PC^* -closed subset of X. Suppose that $U \subset V$ and V is a semiopen subset of X. Since U is a PC^* -closed subset of X, then $\mathfrak{cl}^*(\mathfrak{int}(U)) \setminus \mathfrak{int}^*(\mathfrak{cl}(V)) \in \mathfrak{I}$. It is known that $\mathfrak{cl}^*(\mathfrak{int}(U))$ is equal to $\mathfrak{int}(U) \cup (\mathfrak{int}(U))^*$. Since

$$\mathfrak{cl}^{\star}(\mathfrak{int}(U)) \setminus \mathfrak{int}^{\star}(\mathfrak{cl}(V)) \in \mathfrak{I},$$

the union of $(\operatorname{int}(U) \setminus \operatorname{int}^*(\mathfrak{cl}(V)))$ and $((\operatorname{int}(U))^* \setminus \operatorname{int}^*(\mathfrak{cl}(V)))$ is an element of \mathfrak{I} .

Thus,

$$((\operatorname{int}(U))^* \setminus \operatorname{int}^*(\mathfrak{cl}(V)))$$

is a subset of the union of $(\operatorname{int}(U)\setminus\operatorname{int}^{\star}(\mathfrak{cl}(V)))$ and $((\operatorname{int}(U))^{\star}\setminus\operatorname{int}^{\star}(\mathfrak{cl}(V)))$. Hence, $(\operatorname{int}(U))^{\star}\setminus\operatorname{int}^{\star}(\mathfrak{cl}(V))\in\mathfrak{I}$.

 (\Leftarrow) : Assume that $(\operatorname{int}(U))^* \setminus \operatorname{int}^*(\mathfrak{cl}(V)) \in \mathfrak{I}$ for every semiopen set V such that $U \subset V$.

Let $U \subset Y$ and Y be a semiopen subset of X. Then $(\mathfrak{int}(U))^* \setminus \mathfrak{int}^*(\mathfrak{cl}(Y)) \in \mathfrak{I}$. We have

$$\operatorname{int}(U) \subset \operatorname{int}^{\star}(\mathfrak{cl}(Y)).$$

This implies $\mathfrak{int}(U) \setminus \mathfrak{int}^*(\mathfrak{cl}(Y)) = \emptyset \in \mathfrak{I}$. Furthermore,

$$\mathfrak{cl}^{\star}(\mathfrak{int}(U)) \cap (X \setminus \mathfrak{int}^{\star}(\mathfrak{cl}(Y)))$$

is equal to

$$((\mathfrak{int}(U))^* \cup \mathfrak{int}(U)) \cap (X \setminus \mathfrak{int}^*(\mathfrak{cl}(Y)))$$

and so is equal to the union of

$$((\operatorname{int}(U))^* \setminus \operatorname{int}^*(\mathfrak{cl}(Y)))$$
 and $(\operatorname{int}(U) \setminus \operatorname{int}^*(\mathfrak{cl}(Y))) \in \mathfrak{I}$.

Hence, U is a PC^* -closed subset of X.

THEOREM 2.3. Let U be a subset of (X, ρ, \mathfrak{I}) . If U is $\operatorname{pre}_{I}^{*}$ -open and $\operatorname{pre}_{I}^{*}$ -closed, then U is a PC^{*} -closed subset of X.

Proof. Let U be a pre_I^* -open and pre_I^* -closed subset of (X, ρ, \mathfrak{I}) . Take a semiopen set V such that $U \subset V$. We have $X \setminus U \subset \operatorname{int}^*(\mathfrak{cl}(X \setminus U))$ and then $X \setminus \operatorname{int}^*(\mathfrak{cl}(X \setminus U)) \subset U$. This implies $\mathfrak{cl}^*(X \setminus \mathfrak{cl}(X \setminus U)) \subset U$ and $\mathfrak{cl}^*(\operatorname{int}(U)) \subset U$. Consequently, we have $\mathfrak{cl}^*(\operatorname{int}(U)) \subset U \subset \operatorname{int}^*(\mathfrak{cl}(U))$. Since $U \subset V$, then

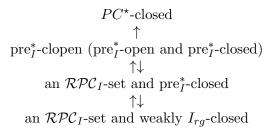
$$\mathfrak{cl}^{\star}(\mathfrak{int}(U))\subset\mathfrak{int}^{\star}(\mathfrak{cl}(U))\subset\mathfrak{int}^{\star}(\mathfrak{cl}(V)).$$

Thus, $\mathfrak{cl}^*(\mathfrak{int}(U)) \setminus \mathfrak{int}^*(\mathfrak{cl}(V)) = \emptyset \in \mathfrak{I}$ and hence, U is a PC^* -closed subset of X.

REMARK 2.4. In any ideal topological space (X, ρ, \mathfrak{I}) , a PC^* -closed subset of X need not be pre_I^* -closed and pre_I^* -open:

EXAMPLE 2.5. Let $X = \{a, b, c, d, e\}$, $\rho = \{\emptyset, \{a\}, \{d\}, \{a, b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\Im = \{\emptyset, \{b\}\}$. Then $U = \{b, d\}$ is PC^* -closed in X but U is not pre $_I^*$ -closed and pre $_I^*$ -open.

Remark 2.6. Let U be any subset of (X, ρ, \Im) . We have the following implications in general for U by Theorem 1.3 and 2.3, Remark 2.4 and Example 2.5.



THEOREM 2.7. Let U be a subset of (X, ρ, \mathfrak{I}) . U is PC^* -closed if and only if for every semiopen subset V such that $U \subset V$, there exists a $Y \in \mathfrak{I}$ such that $(\mathfrak{int}(U))^* \subset \mathfrak{int}^*(\mathfrak{cl}(V)) \cup Y$.

Proof. Follows from Theorem 2.2.

THEOREM 2.8. Let U be a subset of (X, ρ, \mathfrak{I}) . U is PC^* -closed if and only if for every semiopen subset V such that $U \subset V$, there exists a $Y \in \mathfrak{I}$ such that $\mathfrak{cl}^*(\mathfrak{int}(U)) \subset \mathfrak{int}^*(\mathfrak{cl}(V)) \cup Y$.

Proof. Follows from Theorem 2.7.

THEOREM 2.9. Each set in (X, ρ, \mathfrak{I}) is PC^* -closed if and only if $\mathfrak{cl}^*(\mathfrak{int}(V)) \setminus \mathfrak{int}^*(\mathfrak{cl}(V)) \in \mathfrak{I}$ for every semiopen subset V of X.

Proof. (\Rightarrow): Suppose that each set in (X, ρ, \mathfrak{I}) is PC^* -closed. Let V be a semiopen subset of X. This implies that $\mathfrak{cl}^*(\mathfrak{int}(V))\backslash \mathfrak{int}^*(\mathfrak{cl}(V)) \in \mathfrak{I}$. (\Leftarrow): Let $\mathfrak{cl}^*(\mathfrak{int}(Y))\backslash \mathfrak{int}^*(\mathfrak{cl}(Y)) \in \mathfrak{I}$ for every semiopen subset Y of X. Let $U \subset V$ and V be a semiopen subset of X. We have

$$\mathfrak{cl}^{\star}(\mathfrak{int}(U)) \cap (X \setminus \mathfrak{int}^{\star}(\mathfrak{cl}(V)))$$

$$\subset \mathfrak{cl}^{\star}(\mathfrak{int}(V)) \cap (X \setminus \mathfrak{int}^{\star}(\mathfrak{cl}(V))) \in \mathfrak{I}$$

and so $\mathfrak{cl}^{\star}(\mathfrak{int}(U)) \cap (X \setminus \mathfrak{int}^{\star}(\mathfrak{cl}(V))) \in \mathfrak{I}$. Consequently, U is a PC^{\star} -closed subset of X.

THEOREM 2.10. Each set in (X, ρ, \mathfrak{I}) is PC^* -closed if and only if $(\operatorname{int}(V))^* \setminus \operatorname{int}^*(\mathfrak{cl}(V)) \in \mathfrak{I}$ for every semiopen subset V of X.

Proof. (\Rightarrow): Suppose that each set in (X, ρ, \Im) is PC^* -closed. Let V be a semiopen subset of X. By Theorem 2.2, we have $(\operatorname{int}(V))^* \setminus \operatorname{int}^*(\operatorname{\mathfrak{cl}}(V)) \in \Im$.

 (\Leftarrow) : Let $(\operatorname{int}(Y))^* \cap (X \setminus \operatorname{int}^*(\mathfrak{cl}(Y))) \in \mathfrak{I}$ for every semiopen subset Y of X. Let $U \subset V$ and V be a semiopen subset of X. This implies that

$$(\operatorname{int}(U))^* \cap (X \setminus \operatorname{int}^*(\mathfrak{cl}(V)))$$

$$\subset (\operatorname{int}(V))^* \cap (X \setminus \operatorname{int}^*(\mathfrak{cl}(V))) \in \mathfrak{I}.$$

Hence, $(\operatorname{int}(U))^* \cap (X \setminus \operatorname{int}^*(\mathfrak{cl}(V))) \in \mathfrak{I}$. By Theorem 2.2, U is a PC^* -closed subset of X.

3. PC^* -open sets and properties

In this Section, the concept of PC^{\star} -open sets is introduced and properties are studied.

DEFINITION 3.1. Let U be a subset of (X, ρ, \mathfrak{I}) . U is said to be PC^* -open if $X \setminus U$ is a PC^* -closed subset of X.

THEOREM 3.2. Let U be a set in (X, ρ, \mathfrak{I}) . U is PC^* -open if and only if for every semi-closed subset V of X such that $V \subset U$, there exists a set $Y \in \mathfrak{I}$ such that $\mathfrak{cl}^*(\mathfrak{int}(V)) \setminus Y \subset \mathfrak{int}^*(\mathfrak{cl}(U))$

Proof. (\Rightarrow): Let U be PC^* -open in X and V be semi-closed in X such that $V \subset U$. This implies that $X \setminus U \subset X \setminus V$, $X \setminus V$ is semiopen and $X \setminus U$ is a PC^* -closed subset of X. Since $X \setminus U$ is a PC^* -closed subset of X, then

$$\mathfrak{cl}^{\star}(\mathfrak{int}(X\setminus U))\setminus\mathfrak{int}^{\star}(\mathfrak{cl}(X\setminus V))\in\mathfrak{I}.$$

We have

$$\mathfrak{cl}^{\star}(\mathfrak{int}(X \setminus U)) \cap \mathfrak{cl}^{\star}(X \setminus \mathfrak{cl}(X \setminus V))$$

$$= \mathfrak{cl}^{\star}(\mathfrak{int}(X \setminus U)) \cap \mathfrak{cl}^{\star}(\mathfrak{int}(V)) \in \mathfrak{I}.$$

Take $Y = \mathfrak{cl}^*(\mathfrak{int}(X \setminus U)) \cap \mathfrak{cl}^*(\mathfrak{int}(V))$. Then $\mathfrak{cl}^*(\mathfrak{int}(X \setminus U)) \subset \mathfrak{int}^*(\mathfrak{cl}(X \setminus V)) \cup Y$. We have

$$\begin{array}{c} (X \setminus Y) \cap (X \setminus \mathfrak{int}^{\star}(\mathfrak{cl}(X \setminus V))) \\ \subset X \setminus (\mathfrak{cl}^{\star}(\mathfrak{int}(X \setminus U))). \end{array}$$

So

$$\mathfrak{cl}^{\star}(\mathfrak{int}(V)) \setminus Y \subset X \setminus \mathfrak{cl}^{\star}(\mathfrak{int}(X \setminus U))$$

$$= \mathfrak{int}^{\star}(\mathfrak{cl}(U)).$$

Finally, there exists $Y \in \mathfrak{I}$ such that $\mathfrak{cl}^{\star}(\mathfrak{int}(V)) \setminus Y \subset \mathfrak{int}^{\star}(\mathfrak{cl}(U))$.

 (\Leftarrow) : Suppose that for every semi-closed subset D of X such that $D \subset U$, there exists a set $Y \in \mathfrak{I}$ such that $\mathfrak{cl}^{\star}(\mathfrak{int}(D)) \setminus Y \subset \mathfrak{int}^{\star}(\mathfrak{cl}(U))$. Let $X \setminus U \subset V$ and V be a semiopen subset of (X, ρ, \mathfrak{I}) . Then $X \setminus V \subset U$ and $X \setminus V$ is semi-closed. This implies that there exists a set $Y \in \mathfrak{I}$ such that $\mathfrak{cl}^{\star}(\mathfrak{int}(X \setminus V)) \setminus Y \subset \mathfrak{int}^{\star}(\mathfrak{cl}(U))$. We have

$$\mathfrak{cl}^{\star}(\mathfrak{int}(X\setminus V))\cap (X\setminus Y)\subset \mathfrak{int}^{\star}(\mathfrak{cl}(U)).$$

Furthermore, $X \setminus (\operatorname{int}^*(\mathfrak{cl}(U))) \subset X \setminus (\mathfrak{cl}^*(\operatorname{int}(X \setminus V)) \setminus Y)$. Then $\mathfrak{cl}^*(\operatorname{int}(X \setminus U)) \subset \operatorname{int}^*(\mathfrak{cl}(V)) \cup Y$.

This implies

$$\mathfrak{cl}^{\star}(\mathfrak{int}(X\setminus U))\setminus \mathfrak{int}^{\star}(\mathfrak{cl}(V))\subset Y.$$

Hence, $\mathfrak{cl}^{\star}(\mathfrak{int}(X \setminus U)) \setminus \mathfrak{int}^{\star}(\mathfrak{cl}(V)) \in \mathfrak{I}$. Finally $X \setminus U$ is PC^{\star} -closed in X and U is PC^{\star} -open.

THEOREM 3.3. Let U be a PC^* -closed subset of $(X, \rho, \mathfrak{I}), Y \subset \mathfrak{cl}^*(\mathfrak{int}(U)) \setminus U$ and Y be a semi-closed subset of X. Then $\mathfrak{cl}^*(\mathfrak{int}(Y)) \in \mathfrak{I}$.

Proof. Let U be PC^* -closed in $(X, \rho, \mathfrak{I}), Y \subset \mathfrak{cl}^*(\mathfrak{int}(U)) \setminus U$ and Y be a semi-closed subset of X. This implies that $Y \subset X \setminus U$ and $U \subset X \setminus Y$. Since U is a PC^* -closed subset of X, then $\mathfrak{cl}^*(\mathfrak{int}(U)) \setminus \mathfrak{int}^*(\mathfrak{cl}(X \setminus Y)) \in \mathfrak{I}$. We have $\mathfrak{cl}^*(\mathfrak{int}(U)) \setminus (X \setminus \mathfrak{cl}^*(\mathfrak{int}(Y))) \in \mathfrak{I}$. Furthermore,

$$\mathfrak{cl}^{\star}(\mathfrak{int}(Y)) \subset \mathfrak{cl}^{\star}(\mathfrak{int}(U)) \setminus (X \setminus \mathfrak{cl}^{\star}(\mathfrak{int}(Y))).$$

Hence, $\mathfrak{cl}^*(\mathfrak{int}(Y)) \in \mathfrak{I}$.

COROLLARY 3.4. Let U be a PC^* -closed subset of $(X, \rho, \mathfrak{I}), Y \subset \mathfrak{cl}^*(\mathfrak{int}(U)) \setminus U$ and Y be a semi-closed subset of X. Then $\mathfrak{int}(Y) \in \mathfrak{I}$.

Proof. Follows by Theorem 3.3. \square

REMARK 3.5. Let U be a PC^* -closed subset of $(X, \rho, \mathfrak{I}), Y \subset \mathfrak{cl}^*(\mathfrak{int}(U)) \setminus U$ and Y be a semi-closed subset of X. These conditions do not always imply $\mathfrak{cl}^*(Y) \in \mathfrak{I}$ or $Y \in \mathfrak{I}$:

EXAMPLE 3.6. Let $X = \{a, b, c, d, e\}$, $\rho = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, d\}, \{a, b, d\}, X\}$ and $\mathfrak{I} = \{\emptyset, \{c\}\}$. Then $U = \{a, b\}$ is PC^* -closed in X. Also, $Y = \{c, d, e\}$ is semi-closed and $Y \subset \mathfrak{cl}^*(\mathfrak{int}(U)) \setminus U$. But $\mathfrak{cl}^*(Y) = Y \notin \mathfrak{I}$.

THEOREM 3.7. Let U be PC^* -closed in (X, ρ, \mathfrak{I}) . Then $\mathfrak{cl}^*(\mathfrak{int}(U))\setminus U$ is PC^* -open in (X, ρ, \mathfrak{I}) .

Proof. Let U be PC^* -closed in $(X, \rho, \mathfrak{I}), Y \subset \mathfrak{cl}^*(\mathfrak{int}(U)) \setminus U$ and Y be a semi-closed subset of X. By Theorem 3.3, we have $\mathfrak{cl}^*(\mathfrak{int}(Y)) \in \mathfrak{I}$. Then there exists $\mathfrak{cl}^*(\mathfrak{int}(Y)) \in \mathfrak{I}$ such that

$$\begin{array}{rcl} \mathfrak{cl}^{\star}(\mathfrak{int}(Y)) \setminus \mathfrak{cl}^{\star}(\mathfrak{int}(Y)) & = & \emptyset \\ & \subset & \mathfrak{int}^{\star}(\mathfrak{cl}(\mathfrak{cl}^{\star}(\mathfrak{int}(U)) \setminus U)). \end{array}$$

By Theorem 3.2,
$$\mathfrak{cl}^*(\mathfrak{int}(U)) \setminus U$$
 is PC^* -open in (X, ρ, \mathfrak{I}) .

THEOREM 3.8. Let U be PC^* -open in (X, ρ, \mathfrak{I}) , $\mathfrak{int}^*(\mathfrak{cl}(U)) \cup (X \setminus U) \subset V$ and V be a semiopen subset of X. Then $\mathfrak{cl}^*(\mathfrak{int}(X \setminus V)) \in \mathfrak{I}$.

Proof. Let U be PC^* -open in (X, ρ, \mathfrak{I}) , $\mathfrak{int}^*(\mathfrak{cl}(U)) \cup (X \setminus U) \subset V$ and V be a semiopen subset of X.

Since $\mathfrak{int}^*(\mathfrak{cl}(U)) \subset V$, then

$$\begin{array}{rcl} X \setminus V & \subset & X \setminus \mathfrak{int}^{\star}(\mathfrak{cl}(U)) \\ & = & \mathfrak{cl}^{\star}(\mathfrak{int}(X \setminus U)). \end{array}$$

Furthermore, since $X \setminus U \subset V$, then $X \setminus V \subset U$ and also $X \setminus V$ is semi-closed. Then, $X \setminus V \subset (\mathfrak{cl}^*(\mathfrak{int}(X \setminus U))) \cap U$. By Theorem 3.3, $\mathfrak{cl}^*(\mathfrak{int}(X \setminus V)) \in \mathfrak{I}$.

THEOREM 3.9. Let U be PC^* -closed in $(X, \rho, \mathfrak{I}), Y \subset (\mathfrak{int}(U))^* \setminus U$ and Y be semi-closed in X. Then $\mathfrak{cl}^*(\mathfrak{int}(Y)) \in \mathfrak{I}$.

Proof. Follows by Theorem 3.3.
$$\square$$

COROLLARY 3.10. Let U be PC^* -closed in $(X, \rho, \mathfrak{I}), Y \subset (\mathfrak{int}(U))^* \setminus U$ and Y be semi-closed in X. Then $\mathfrak{int}(Y) \in \mathfrak{I}$ and $(\mathfrak{int}(Y))^* \in \mathfrak{I}$.

Proof. Follows by Theorem 3.9. \Box

References

- S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
- [2] E. Ekici and Ö. Elmalı, On decompositions via generalized closedness in ideal spaces, Filomat. 29 (2015), no. 4, 879-886.
- [3] E. Ekici and S. Özen, A generalized class of τ^* in ideal spaces, Filomat. 27 (2013), no. 4, 529-535.
- [4] E. Ekici, On A_I^{*}-sets, C_I-sets, C_I^{*}-sets and decompositions of continuity in ideal topological spaces, Analele Stiintifice Ale Universitatii Al. I. Cuza Din Iasi (S. N.) Matematica, Tomul LIX (2013), no. 1, 173-184.
- [5] E. Ekici, On \mathcal{AC}_I -sets, \mathcal{BC}_I -sets, β_I^* -open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform. **20** (2011), no. 1, 47-54.
- [6] E. Ekici and T. Noiri, Properties of I-submaximal ideal topological spaces, Filomat. 24 (2010), 87-94.

- [7] E. Ekici and T. Noiri, On subsets and decompositions of continuity in ideal topological spaces, Arabian Journal for Science and Engineering 34 (2009), 165-177.
- [8] E. Ekici, A note on a-open sets and e*-open sets, Filomat. 22:1 (2008), 89-96.
- [9] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295-310.
- [10] K. Kuratowski, Topology, Academic Press, New York 1 (1966).
- [11] E. P. Lee and S. O. Lee, *Double pairwise* (r,s)(u,v)-semicontinuous mappings, Journal of the Chungcheong Mathematical Society **27** (2014), no. 4, 603-614.
- [12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly **70** (1963), 36-41.
- [13] A. D. Ray and R. Bhowmick, Separation axioms on bi-generalized topological spaces, Journal of the Chungcheong Mathematical Society 27 (2014), no. 3, 363-379.
- [14] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-381.

*

Department of Mathematics
Canakkale Onsekiz Mart University
Terzioglu Campus 17020, Canakkale, TURKEY
E-mail: eekici@comu.edu.tr(prof.dr.erdalekici@gmail.com)

**

Department of Mathematics Canakkale Onsekiz Mart University Terzioglu Campus 17020, Canakkale, TURKEY E-mail: aysenurtunc@comu.edu.tr