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LOCAL SPECTRAL PROPERTIES OF

QUASI-DECOMPOSABLE OPERATORS

Jong-Kwang Yoo* and Heung Joon Oh**

Abstract. In this paper we investigate the local spectral proper-
ties of quasidecomposable operators. We show that if T ∈ L(X) is
quasi-decomposable, then T has the weak-SDP and σloc(T ) = σ(T ).
Also, we show that the quasi-decomposability is preserved under
commuting quasi-nilpotent perturbations. Moreover, we show that
if f : U → C is an analytic and injective on an open neighborhood U
of σ(T ), then T ∈ L(X) is quasi-decomposable if and only if f(T )
is quasi-decomposable. Finally, if T ∈ L(X) and S ∈ L(Y ) are
asymptotically similar, then T is quasi-decomposable if and only if
S does.

1. Introduction and basic definitions

Let X and Y be complex Banach spaces over the complex field C,
and let L(X,Y ) be the Banach algebra of all bounded linear operators
from X to Y, and let L(X) := L(X,X). Given T ∈ L(X), we use σ(T ),
σp(T ), σsur(T ), σap(T ), and ρ(T ) to denote the spectrum, the point
spectrum, the surjectivity spectrum, the approximate point spectrum,
and the resolvent set of T, respectively. As usual, given T ∈ L(X), let
kerT and T (X) stand for the kernel and range of T. Let Lat(T ) stand
for the collection of all T -invariant closed linear subspaces of X. For
Y ∈ Lat(T ), let T |Y denote the operator given by the restriction of T
to Y.

The local resolvent set ρT (x) of an operator T at a point x ∈ X is the
union of all open subsets U of C for which there is an analytic function
f : U → X that satisfies the equation

(λI − T )f(λ) = x for all λ ∈ U.
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The local spectrum of T at x is defined by σT (x) := C \ ρT (x), and
obviously σT (x) is a closed subset of σ(T ).

An operator T ∈ L(X) is said to have the single-valued extension
property at λ ∈ C (abbreviated SVEP at λ), if for every open disc U
centered at λ, the only analytic function f : U → X which satisfies the
equation

(µI − T )f(µ) = 0 for all µ ∈ U

is the constant function f ≡ 0. An operator T ∈ L(X) is said to have
the SVEP if T has the SVEP at every point λ ∈ C.

For every subset F of C, the analytic spectral subspace of T associated
with F is the set XT (F ) := {x ∈ X : σT (x) ⊆ F}. It is easy to see from
definition that XT (F ) is a T−invariant linear subspace of X and that
XT (F1) ⊆ XT (F2) whenever F1 ⊆ F2. It is well known from Proposition
1.2.16 of [11] that

T has SVEP ⇔ XT (ϕ) = {0} ⇔ XT (ϕ) is closed.

It is more appropriate to work with another kind of spectral subspaces:
for each closed set F ⊆ C, the glocal spectral subspace XT (F ) consists
of all x ∈ X for which there exists an analytic function f : C \ F →
X such that (λI − T )f(λ) = x for each λ ∈ C \ F. It is clear that
XT (F ) ⊆ XT (F ). Evidently, by Proposition 3.3.2 of [11], T has SVEP
if and only if XT (F ) = XT (F ) for all closed sets F ⊆ C. We emphasize
that neither the local nor the glocal spectral subspaces have to be closed.
These linear subspaces play a fundamental role in the spectral theory of
operators on Banach spaces.

An operator T ∈ L(X) on a complex Banach space X is said to have
Dunford’s property (C) (shortly, property (C)) if XT (F ) is closed for
every closed set F ⊆ C.

Recall from [11] that an operator T ∈ L(X) is said to have Bishop’s
property (β) if, for every open subset U of C and for every sequence of
analytic functions fn : U → X for which (λI − T )fn(λ) converges uni-
formly to zero on each compact subset of U, it follows that also fn(λ) → 0
as n → ∞, locally uniformly on U. An operator T ∈ L(X) is said to have
the decompositions property (δ) if for each open cover {U1, U2} of C and
for each x ∈ X there are a pair of elements ui ∈ X and a pair of analytic
functions fi : C \ Ui −→ X such that x = u1 + u2, ui = (λI − T )fi(λ)
for all λ ∈ C \ Ui, (i = 1, 2).

Properties (β) and (δ) are known to be dual to each other in the sense
that T ∈ L(X) has (β) if and only if T ∗ ∈ L(X∗) satisfies (δ), where
T ∗ is the adjoint operator on the dual space X∗. It is clear that the
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decompositions property (δ) is inherited by quotients and decomposition
property (δ) means precisely that X = XT (U1)+XT (U2) for every open
covering {U1, U2} of C, see [1] and [11].

Recall from [1] that an operator T ∈ L(X) is called decomposable
if, for every open covering {U1, U2} of the complex plane C, there exist
Yi ∈ Lat(T ) such that

X = Y1 + Y2, and σ(T |Yi) ⊆ Ui for all i = 1, · · · , n.

Clearly, Yi ⊆ XT (Ui) for all i = 1, · · · , n, it is easily shown that if
T ∈ L(X) is decomposable, then X = XT (U1) +XT (U2) for every open
cover {U1, U2} of C.

A weaker version of decomposable operators is given by operators
that have weak spectral decomposition property, abbreviated weak-SDP
provided that there exist Yi ∈ Lat(T ) such that

X = Y1 + Y2 + · · ·+ Yn and σ(T |Yi) ⊆ Ui for all i = 1, · · · , n.

Evidently, Yi ⊆ XT (Ui) for all i = 1, · · · , n, and it is easily shown
that if T ∈ L(X) has the weak-SDP, then

X = XT (U1) +XT (U2) + · · ·+XT (Un)

for every open cover {U1, · · · , Un} of C. In [4], E. Albrecht gives an
example that shows that the class of bounded linear operators with
weak-SDP contains strictly the class of decomposable operators. Note
that it follows from [1] and [4] that operators with the weak 2-SDP need
not have the property (δ), and there are operators with the property (δ)
with no weak 2-SDP.

2. Results

Definition 2.1. An operator T ∈ L(X) is quasi-decomposable if T
has property (C) and for every finite open cover {U1, · · · , Un} of C, the
sum

XT (U1) + · · · +XT (Un)

is dense in X.

The class of quasi-decomposable operators contains all normal op-
erators and more generally all spectral operators. Operators with to-
tally disconnected spectrum are quasi-decomposable by the Riesz func-
tional calculus. In particular, compact and algebraic operators are
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quasi-decomposable. It is clear that every quasi-decomposable oper-
ator has SVEP. Evidently, every decomposable operators are quasi-
decomposable, but an example due to Albrecht illustrates that the con-
verse is not true in general, see [4]. If T is the unilateral left shift on
the sequence space X = ℓp(N) for arbitrary 1 ≤ p < ∞, then T does not
have the SVEP, and hence T is not quasi-decomposable.

Theorem 2.2. If T ∈ L(X) is quasi-decomposable then T has the
weak-SDP. Moreover, for every open cover {U1, · · · , Un} of σ(T ), there
exist Yi ∈ Lat(T ) such that

(a) X = Y1 + Y2 + · · ·+ Yn;
(b) σ(T |Yi) ⊆ Ui for all i = 1, · · · , n;
(c) σ(T ) =

∪n
i=1 σ(T |Yi).

Proof. Let {U1, · · · , Un} be an open cover of C. We can choose an
open cover {V1, · · · , Vn} of C such that Vi ⊆ Vi ⊆ Ui for all i = 1, · · · , n.
Since T is quasi–decomposable, the sum

XT (V1) + · · · +XT (Vn)

is dense in X. Since T has property (C), XT (Vi) is closed. Let Yi :=
XT (Vi) ∈ Lat(T ). It follows from Proposition 1.2.20 of [11] that

σ(T |Yi) = σ(T |XT (Vi)) ⊆ Vi ⊆ Ui

for all i = 1, · · ·n. Since Yi ⊆ XT (Vi) for all i = 1, · · · , n, we obtain

X = Y1 + Y2 + · · ·+ Yn,

and hence T has the weak SDP. Let K :=
∪n

i=1 σ(T |Yi). Suppose on
the contary that K is a proper subset of σ(T ). Then XT (K) is a proper
subspace of X = XT (σ(T )) and Yi ⊆ XT (K) for all i = 1, · · · , n. This
implies that X ⊆ XT (K), contradiction. Hence σ(T ) = ∪n

i=1σ(T |Yi).

Theorem 2.3. If T ∈ L(X) is quasi-decomposable, then T ∗ has
SVEP. Moreover, σ(T ) = σap(T ).

Proof. It follows from Proposition 2.5.1 of [11] that

X ∗
T ∗(ϕ) ⊆ XT (C)⊥ = XT (C)⊥ = {0}.

By Proposition 1.2.16 (f) of [11], T ∗ has SVEP. It follows from Theorem
2.42 of [1] that σ(T ) = σ(T ∗) = σsur(T

∗) = σap(T ).
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Recall from [10] that an operator A ∈ L(X,Y ) is said to intertwine
S ∈ L(Y ) and T ∈ L(X) asymptotically if

∥C(S, T )n(A)∥
1
n → 0 as n → ∞,

where C(S, T ) : L(X,Y ) → L(X,Y ) is defined by C(S, T )(A) := SA −
AT for all A ∈ L(X,Y ) and C(S, T )n(A) := C(S, T )n−1(SA − AT ) for
all n ∈ N.

Theorem 2.4. Let Q ∈ L(X) be a quasi-nilpotent commuting with
T ∈ L(X). Then T is quasi-decomposable if and only if T +Q is quasi-
decomposable.

Proof. We show that XT (F ) = XT+Q(F ) for all closed subsets F of
C. Since TQ = QT, we have

C(T +Q,T )n(I) = Qn and C(T, T +Q)n(I) = (−1)nQn

for all n ∈ N. Since Q is quasi-nilpotent, we have

lim
n→∞

∥C(T +Q,T )n(I)∥
1
n = lim

n→∞
∥C(T, T +Q)n(I)∥

1
n = 0.

We follow the line of reasoning in the proof of Theorem 2.3.3 in [7].
We show that σT+Q(x) ⊆ σT (x) for all x ∈ X. Let x ∈ X and let
λ0 /∈ σT (x). Then there exists an analytic function f : U → X on an
open neighborhood U of λ0 such that

(µI − T )f(µ) = x for all µ ∈ U.

Choose two closed discs V,W centered at λ0 with radii 0 < s < r such
that V ⊆ W ⊆ U. Since f(W ) is compact, there exists a constant M ≥ 0
such that

∥f(λ)∥ ≤ M for all λ ∈ W.

For each λ ∈ V, we obtain from Cauchy’s integral formula that∥∥f (n)(λ)

n!

∥∥ =
∥∥ 1

2πi

∫
∂W

f(µ)

(µ− λ)n+1
dµ

∥∥ ≤ Mr

(r − s)n+1

for all n = 0, 1, · · · . Let ϵ := (r−s)/2. Since limn→∞ ∥C(T+Q,T )n(I)∥
1
n =

0, there exists K ≥ 0 such that

∥C(T +Q,T )n(I)∥
1
n ≤ Kϵn

for all n = 0, 1, · · · . Thus we have∥∥|C(T +Q,T )n(I)
f (n)(λ)

n!

∥∥ ≤ MKr

2n(r − s)
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for all λ ∈ V and n = 0, 1, · · · . We define g : U → X by

g(λ) :=

∞∑
n=0

C(T +Q,T )n(I)
f (n)(λ)

n!
for all λ ∈ U.

Then g(λ) converges locally uniformly on V and hence locally uniformly
on U. Since (λI −T )f(λ) = x for all λ ∈ U, we obtain by induction that

(λI − T )f (n)(λ) = nf (n−1)(λ)

for all λ ∈ U and for all n ∈ N. Since C(T+Q,T )n+1(I) = (T+Q)C(T+
Q,T )n(I)−C(T +Q,T )n(I)T for all n = 0, 1, · · · , it is easy to see that

(λI − (T +Q))g(λ) = A(λI − T )f(λ) = Ax

for all λ ∈ U, which implies that λ /∈ σT+Q(x). We have proved that

σT+Q(x) ⊆ σT (x) for all x ∈ X.

The opposite inclusion can be proved in a similar way, and hence σT+Q(x) =
σT (x) for all x ∈ X. Hence XT+Q(F ) = XT (F ) for all closed subsets F
of C. This implies T + Q has property (C) if and only if T does. For
each finite open cover {U1, · · · , Un} of C, XT+Q(Ui) = XT (Ui) for all
i = 1, · · · , n. It follows that T +Q is quasi-decomposable if and only if
T does.

For an arbitrary operator T ∈ L(X) and analytic function f : U →
C on an open neighborhood U of σ(T ), let f(T ) ∈ L(X) denote the
operator given by the Riesz functional calculus

f(T ) :=
1

2πi

∫
Γ
f(λ)(λI − T )−1dλ,

where Γ is a contour in U that surrounds σ(T ). The classical spectral
mapping theorem asserts that σ(f(T )) = f(σ(T )), see [1] and [11].

Lemma 2.5. ([11]) Let T ∈ L(X) and let f : U → C be an ana-
lytic function on an open neighborhood U of σ(T ). Then Xf(T )(F ) =

XT (f
−1(F )) for every closed subset F of C.

Theorem 2.6. Let T ∈ L(X) and let f : U → C be analytic
and injective on an open neighborhood U of σ(T ). Then T is quasi-
decomposable if and only if f(T ) is quasi-decomposable.

Proof. It follows from the spectral mapping theorem that f(σ(T )) =
σ(f(T )). Suppose that T is quasi-decomposable. Then T has property
(C). Since Xf(T )(F ) = XT (f

−1(F )) for all closed F ⊆ C, f(T ) has
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property (C). Let {U1, · · · , Un} be an open cover of σ(f(T )) = f(σ(T )).
Then {f−1(U1), · · · , f−1(Un)} is an open cover of σ(T ). The sum

XT (f−1(U1)) + · · ·+XT (f−1(Un))

is dense in X. Also, it follows from Lemma 2.5 that

XT (f−1(Ui)) ⊆ XT (f
−1(Ui)) = Xf(T )(Ui)

for all i = 1, · · · , n, and hence the sum

Xf(T )(U1) + · · ·+Xf(T )(Un)

is dense in X, which implies that f(T ) is quasi-decomposable.
To prove the reverse implication, assume that f(T ) is

quasi-decomposable. It follows from Lemma 2.5 that T has property (C).
Let {V1, · · · , Vn} be an open cover of σ(T ), and let Wi := U ∩ Vi(i =
1, · · · , n). Then clearly, {W1, · · · ,Wn} is an open cover of σ(T ). By the
open mapping theorem,

{f(W1), · · · , f(Wn)}

is an open cover of f(σ(T )) = σ(f(T )). Thus the sum

Xf(T )(f(W1)) + · · ·+Xf(T )(f(Wn))

is dense in X. Since f is injective, Xf(T )(f(Wi)) = XT (Wi) for all i =

1, · · · , n. Thus XT (W1) + · · ·+XT (Wn) is dense in X, and hence

XT (V1) + · · ·+XT (Vn)

is dense in X, which implies that T is quasi-decomposable.

The operators T ∈ L(X) and S ∈ L(Y ) are asymptotically similar
if there is a bijection A ∈ L(X,Y ) such that A intertwines S and T
asymptotically and its inverse A−1 intertwines T and S asymptotically.

It is well known that if T ∈ L(X) and S ∈ L(Y ) are asymptotically
similar and a corresponding bijection is A ∈ L(X,Y ) for the asymptotic
intertwining of (S, T ) and (T, S), then σ(T ) = σ(S), AXT (F ) = YS(F )
and A−1YS(F ) = XT (F ) for all closed subsets F of C. We show that
the quasi-decomposability is preserved under commuting quasi-nilpotent
perturbations.

Theorem 2.7. Let T ∈ L(X) and S ∈ L(Y ). Suppose that T and S
are asymptotically similar. Then T is quasi-decomposable if and only if
S does.
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Proof. Let A ∈ L(X,Y ) be a bijection such that A intertwines S and
T asymptotically and its inverse A−1 intertwines T and S asymptoti-
cally. Then it is easily shown that σ(T ) = σ(S), AXT (F ) = YS(F ) and
A−1YS(F ) = XT (F ) for all closed subset F of C. This shows that prop-
erty (C) carries over from T to S. Suppose that T is quasi-decomposable.
For any open cover {U1, · · · , Un} of σ(T ) = σ(S), the sum

XT (U1) + · · · +XT (Un)

is dense in X. Thus we have

Y = A(X) ⊆ A(XT (U1)) + · · · +A(XT (Un)) = YS(U1) + · · · + YS(Un),

which implies that the sum

YS(U1) + · · · + YS(Un)

is dense in Y, and hence S is quasi-decomposable. The reverse implica-
tion is similar. This completes the proof.

The localizable spectrum σloc(T ) of an operator T ∈ L(X) is defined
as a set of all λ ∈ C for which XT (V ) ̸= {0} for every open neighborhood
V of λ.

It is well known that σloc(T ) is a closed subset of σ(T ) and that
σloc(T ) contains the point spectrum σp(T ) and is included in the ap-
proximate point spectrum σap(T ) of T. It is clear that if T does not

have the SVEP, then σloc(T ) = σ(T ), since XT (ϕ) ⊆ XT (U) for every
open neighborhood U of λ ∈ C, see more details [8], [12], [13] and [14].
As shown in [13], the localizable spectrum plays an important role in
the theory of invariant subspaces.

Theorem 2.8. Suppose that T ∈ L(X) is quasi-decomposable. Then
σloc(T ) = σap(T ) = σ(T ).

Proof. Obviously, σap(T ) ⊆ σ(T ). To verify that σloc(T ) ⊆ σap(T ),
we assume that λ /∈ σap(T ). Then there exists some constant r > 0 such

that V ∩ σap(T ) = ϕ, where V is an open disc centered at λ with radius

r. By Theorem 3.3.12 (d) of [11], XT (V ) = XT (V ) = {0}. This implies
that λ /∈ σloc(T ), and hence σloc(T ) ⊆ σap(T ). Finally, we show that
σap(T ) ⊆ σloc(T ). Let λ /∈ σloc(T ). Then there exists ϵ > 0 such that

XT (U1) = {0}, where U1 is an open disc centered at λ with radius ϵ.
We consider U2 := C \W, where W is an open disc centered at λ with
radius ϵ/2. Since {U1, U2} is an open cover of C, we choose an open cover
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{W1,W2} of C such that Wi ⊆ Wi ⊆ Ui for all i = 1, 2. By Theorem 2.2,
T has the weak-SDP. Thus there exist Yi ∈ Lat(T ) such that

X = Y1 + Y2, and σ(T |Yi) ⊆ Wi for all i = 1, 2.

This implies that

Y1 ⊆ XT (W1) ⊆ XT (U) = {0},

and hence X = Y2. Thus σ(T ) = σ(T |Y2) ⊆ W2. Since λ /∈ U2, we obtain
λ /∈ σ(T ), which implies that σ(T ) ⊆ σloc(T ).

It is well known that if T ∈ L(X), S ∈ L(Y ), X1 ∈ Lat(T ) and
Y1 ∈ Lat(S), then we have

σ(T ⊕ S|X1 ⊕ Y1) = σ(T |X1) ∪ σ(S|Y1),

where X1 ⊕ Y1 is considered as a subspace of X ⊕ Y := {x ⊕ y : x ∈
X and y ∈ Y } and ∥x⊕ y∥ = (∥x∥2 + ∥y∥2)1/2.

The following lemma is an immediate cosequence of Proposition 1.4
of [7].

Lemma 2.9. ([7]) Let T ∈ L(X) and S ∈ L(Y ). Then (X⊕Y )T⊕S(F ) =
XT (F )⊕ YS(F ) for all subsets F of C.

Theorem 2.10. Let T ∈ L(X) and S ∈ L(Y ). If T ∈ L(X) and
S ∈ L(Y ) are quasi-decomposable then T ⊕S ∈ L(X ⊕Y ) is also quasi-
decomposable.

Proof. Suppose that T ∈ L(X) and S ∈ L(Y ) are quasi-decomposable.
By Lemma 2.9, for each closed F ⊆ C, (X ⊕ Y )T⊕S(F ) is closed.
Thus T ⊕ S has property (C). Let {U1, · · · , Un} be an open cover of
σ(T ⊕ S) = σ(T ) ∪ σ(S). Then the sum

XT (U1) + · · ·+XT (Un)

is dense in X and the sum

YS(U1) + · · ·+ YS(Un)

is dense in Y. Since (X ⊕ Y )T⊕S(Ui) = XT (Ui) ⊕ YS(Ui) for all i =
1, · · · , n,

(X ⊕Y )T⊕S(U1)+ · · ·+(X ⊕Y )T⊕S(Un) = (

n∑
i=1

XT (Ui))⊕ (

n∑
i=1

YS(Ui))

is dense in X ⊕ Y. Hence T ⊕ S is quasi-decomposable.
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