Acknowledgement
Supported by : Isfahan university of Technology
References
- N. S. Agashe and M. R. Chafle, A semi-symmetric non-metric connection in a Rie-mannian manifold, indian J. Pur Appl. Math., 23(1992), 399-409.
- E. Calabi, Construction and properties of some 6-dimensional almost complex mani-folds, Trans. Amer. Math. Sot., 87(1958), 407-438.
- E. Calabi and B. Eckmann, A class of compact, complex manifolds which are not algebraic, Ann. of Math., 58(2)(1953), 494-500. https://doi.org/10.2307/1969750
- S. K. Chauby and R. H. Ojha, On semi-symmetric non-metric and quarter-symmetric metric connection, Pur and Applied Mathematics Tensor N.S, 70(2)(2008), 202-213.
- Y. Dogru, On some properties of submanifolds of a Riemannian manifold endowed with a semi-symmetric non-metric connection, An. St. Univ. Ovidius Constanta, 19(3)(2011), 85-100.
- A. Friedmann, J. A. Schouten, Uber die geometrie der halbsymmetrischen ubertra-gungn, Math. Zeitschr, 21(1924), 211-233. https://doi.org/10.1007/BF01187468
- S. Golab, On semi-symmetric and quarter-symetric linear connections, Tensor N.S., 29(1975), 249-254.
- H. A. Hayden, Subspaces of space with torsion, Proc. London Math. Soc., 55(1994), 107-112.
- Y. Liang, On semi-symmetric recurrent-metric connection, Tensor, 34(1932), 27-50.
- N. Pandey and B. B. Chaturvedi, semi-symmetric non metrics connections on a Kahler manifold, DGDS., 10(2008), 86-90.
- M. M. Tripathi, A new connection in a Riemannian manifold, Int. Electron. J. Geom., 1(1)(2008), 15-24.