DOI QR코드

DOI QR Code

Simulation of Low Temperature Plasmas for an Ultra Violet Light Source using Coplanar Micro Dielectric Barrier Discharges

  • Bae, Hyowon (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Lee, Ho-Jun (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Lee, Hae June (Department of Electrical and Computer Engineering, Pusan National University)
  • Received : 2016.11.07
  • Accepted : 2016.11.22
  • Published : 2016.11.30

Abstract

The discharge characteristics of pulse-driven coplanar micro barrier discharges for an ultraviolet (UV) light source using Ne-Xe mixture have been investigated using a two-dimensional fluid simulation at near-atmospheric pressure. The densities of electrons, the radiative excited states, the metastable excited states, and the power loss are investigated with the variations of gas pressure and the gap distance. With a fixed gap distance, the number of the radiative states $Xe^*(^3P_1)$ increases with the increasing driving voltage, but this number shows weak dependency on the gas when that pressure is over 400 Torr. However, the number of the radiative states increases with the increase of the gap distance at a fixed voltage, while the power loss decreases. Therefore, a long gap discharge has higher efficiency for UV generation than does a short gap discharge. A slight change in the electrode tilt angle enhances the number of radiative species 2 or 3 times with the same operation conditions. Therefore, the intensity and efficiency of the UV light source can be controlled independently by changing the gap distance and the electrode structure.

Keywords

References

  1. U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003).
  2. H. W. Lee, G. Y. Park, Y. S. Seo, Y. H. Im, S. B. Shim, and H. J. Lee, J. Phys. D: Appl. Phys. 44, 053001 (2011). https://doi.org/10.1088/0022-3727/44/5/053001
  3. F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, and M. G. Kong, Plasma Process. Polym. 5, 322 (2008). https://doi.org/10.1002/ppap.200700162
  4. M. Boselli, V. Colombo, M. Gherardi, R. Laurita, A. Liguori, P. Sanibondi, E. Simoncelli, and A. Stancampiano, IEEE Trans. Plasma. Sci. 43, 713 (2015). https://doi.org/10.1109/TPS.2014.2381854
  5. H. W. Lee, S. H. Nam, A.-A. H. Mohamed, G. C. Kim, and J. K. Lee, Plasma Process. Polym. 7, 274 (2010). https://doi.org/10.1002/ppap.200900083
  6. J. Y. Kim, J. Ballato, and S.-O. Kim, Plasma Processes Polym. 9, 253 (2012). https://doi.org/10.1002/ppap.201100190
  7. H.Y. Kim, S. K. Kang, S. M. Park, H. Y. Jung, B. H. Choi, J. Y. Sim, and J. K. Lee, Plasma Process. Polym. 12, 1423 (2015). https://doi.org/10.1002/ppap.201500017
  8. H. Y. Kim, S. K. Kang, H. C. Kwon, H. W. Lee, and J. K. Lee, Plasma Process. Polym. 10, 686, (2013). https://doi.org/10.1002/ppap.201200163
  9. H. Y. Kim, H. W. Lee, S. K. Kang, H. Wk. Lee, G. C. Kim, and J. K. Lee, Phys. Plasmas. 19, 073518 (2012). https://doi.org/10.1063/1.4739777
  10. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges (John Wiley & Sons Inc., New Jersey, 2005).
  11. F. Chen, Introduction to plasma physics and controlled fusion (Plenum Press, New York, 1984).
  12. J. P. Boeuf, J. Phys. D: Appl. Phys. 36, R53 (2003).
  13. M. J. Kushner, J. Phys. D: Appl. Phys. 38, 1633 (2005). https://doi.org/10.1088/0022-3727/38/11/001
  14. Y. Sakiyama and D. B. Graves, Plasma Sources Sci. Technol. 22, 012003 (2013). https://doi.org/10.1088/0963-0252/22/1/012003
  15. H. W. Bae, I. C. Song, S. W. Hwang, H.-J. Lee, and H. J. Lee, J. Korean Phys. Soc., 59, No. 6, pp. 3453 (2011). https://doi.org/10.3938/jkps.59.3453
  16. O. Sahni, C. Lanza, J. Appl. Phys. 47, 1337 (1976). https://doi.org/10.1063/1.322837
  17. H. J. Lee, H. C. Kim, S. S. Yang, and J. K. Lee, Phys. Plasmas 9, 2822 (2002). https://doi.org/10.1063/1.1470498
  18. I. C. Song, S. W. Hwang, D.-H. Kim, H.-J. Lee, C.-H. Park, and H. J. Lee, IEEE Trans. Plasma Sci. 37, 1572 (2009). https://doi.org/10.1109/TPS.2009.2023479
  19. I. C. Song, J.-W. Ok, S. W. Hwang, H.-J. Lee, C.-H. Park, D.-K. Lee, and H. J. Lee, Thin Solid Films 518, 3122 (2010). https://doi.org/10.1016/j.tsf.2009.09.175
  20. S. B. Shim, S.-Y. Cho, D.-K. Lee, I. C. Song, C.-H. Park, H.-J. Lee, and H. J. Lee, Thin Solid Films 518, 3037 (2010). https://doi.org/10.1016/j.tsf.2009.10.133
  21. S. B. Shim, I. C. Song, H.-J. Lee, and H. J. Lee, J. Appl. Phys. 110, 023301 (2011). https://doi.org/10.1063/1.3606407
  22. J.-W. Ok, B-S. Lee, S. Choi, M. Won, D.-H. Kim, H. J. Lee, and H.-J. Lee, Plasma Sources Sci. Technol. 23, 025018 (2014) https://doi.org/10.1088/0963-0252/23/2/025018
  23. http://www.bolsig.laplace.univ-tlse.fr.