DOI QR코드

DOI QR Code

Optimal design of truss structures using a new optimization algorithm based on global sensitivity analysis

  • Kaveh, A. (Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology) ;
  • Mahdavi, V.R. (School of Civil Engineering, Iran University of Science and Technology)
  • Received : 2016.02.04
  • Accepted : 2016.10.08
  • Published : 2016.12.25

Abstract

Global sensitivity analysis (GSA) has been widely used to investigate the sensitivity of the model output with respect to its input parameters. In this paper a new single-solution search optimization algorithm is developed based on the GSA, and applied to the size optimization of truss structures. In this method the search space of the optimization is determined using the sensitivity indicator of variables. Unlike the common meta-heuristic algorithms, where all the variables are simultaneously changed in the optimization process, in this approach the sensitive variables of solution are iteratively changed more rapidly than the less sensitive ones in the search space. Comparisons of the present results with those of some previous population-based meta-heuristic algorithms demonstrate its capability, especially for decreasing the number of fitness functions evaluations, in solving the presented benchmark problems.

Keywords

Acknowledgement

Supported by : Iran National Science Foundation

References

  1. Adeli, H. and Kumar, S. (1995), "Distributed genetic algorithm for structural optimization", J. Aerospace Eng., ASCE, 8(3), 156-163. https://doi.org/10.1061/(ASCE)0893-1321(1995)8:3(156)
  2. American Institute of Steel Construction (AISC) (1989), Manual of Steel Construction Allowable Stress Design, 9th Edition, Chicago, IL, USA.
  3. Archer, G., Saltelli, A. and Sobol, I. (1997), "Sensitivity measures, ANOVA-like techniques and the use of bootstrap", J. Statist. Comput. Simul., 58, 99-120. https://doi.org/10.1080/00949659708811825
  4. Arora, J.S. (1989), Introduction to Optimum Design, McGraw-Hill, New York, USA.
  5. Belegundu, A.D. (1982), "A study of mathematical programming methods for structural optimization", Ph.D. Thesis, Department of Civil and Environmental Engineering, University of Iowa, Iowa, USA.
  6. Camp, C.V. (2007), "Design of space trusses using Big Bang-Big Crunch optimization", J. Struct. Eng., ASCE, 133, 999-1008. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999)
  7. Camp, C.V. and Bichon B.J. (2004), "Design of space trusses using ant colony optimization", J. Struct. Eng., ASCE, 130, 741-751. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(741)
  8. Chapman and Hall/CRC, Computer & Information Science Series, Chapman & Hall/CRC, UK
  9. Coello, C.A.C. (2000), "Use of a self-adaptive penalty approach for engineering optimization problems", Comput. Indust. Eng., 41, 113-127. https://doi.org/10.1016/S0166-3615(99)00046-9
  10. Coello, C.A.C. and Montes, E.M. (2002), "Constraint-handling in genetic algorithms through the use of dominance-based tournament", IEEE Tran. Reliab., 41, 576-582.
  11. Deb, K. (1991), "Optimal design of a welded beam via genetic algorithms", AIAA J., 29, 2013-2015. https://doi.org/10.2514/3.10834
  12. Deb, K. (2000), "An efficient constraint handling method for genetic algorithms", Comput. Meth. Appl. Mech. Eng., 186(2-4), 311-338. https://doi.org/10.1016/S0045-7825(99)00389-8
  13. Dog, B. and Olmez T. (2015), "A new meta-heuristic for numerical function optimization: Vortex Search algorithm", Inform. Sci., 293, 125-145. https://doi.org/10.1016/j.ins.2014.08.053
  14. Dorigo, M., Maniezzo, V. and Colorni, A. (1996), "The ant system: optimization by a colony of cooperating agents", IEEE Tran. Syst. Man. Cyber B, 26, 29-41. https://doi.org/10.1109/3477.484436
  15. Eberhart, R.C. and Kennedy J. (1995), "A new optimizer using particle swarm theory", Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan.
  16. Erbatur, F., Hasancebi, O., Tutuncu, I. and Kilic, H. (2014), "Optimal design of planar and space structures with genetic algorithms", Comput. Struct., 75, 209-224.
  17. Erol, O.K. and Eksin, I. (2006), "New optimization method: Big Bang-Big Crunch", Adv. Eng. Softw., 37, 106-111. https://doi.org/10.1016/j.advengsoft.2005.04.005
  18. Gallagher, R.H., Ragsdell, K.M. and Zienkiewicz, O.C. (1984), New directions in optimum structural design, John Wiley, New York.
  19. Gholizadeh, S. and Poorhoseini, H. (2015) "Optimum design of steel frame structures by a modified dolphin echolocation algorithm", Struct. Eng. Mech., 55, 535-554. https://doi.org/10.12989/sem.2015.55.3.535
  20. Gholizadeh, S., Gheyratmand, C. and Davoudi, H. (2016), "Optimum design of double layer barrel vaults considering nonlinear behavior", Struct. Eng. Mech., 58, 1109-1126. https://doi.org/10.12989/sem.2016.58.6.1109
  21. Gonzalez, T.F. (2007), Handbook of approximation algorithms and meta-heuristics.
  22. Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2009), "Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures", Comput. Struct., 87, 284-302. https://doi.org/10.1016/j.compstruc.2009.01.002
  23. He, Q. and Wang, L. (2007), "An effective co-evolutionary particle swarm optimization for constrained engineering design problem", Eng. Appl. Artific. Intell., 20, 89-99. https://doi.org/10.1016/j.engappai.2006.03.003
  24. Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor.
  25. Hooke, R. and Jeeves, T.A. (1961), "Direct search solution of numerical and statistical problems", J. Assoc. Comput. Mach., 8(2), 212-229. https://doi.org/10.1145/321062.321069
  26. Kaveh, A. and Bakhshpoori, T. (2016) "Water evaporation optimization: a novel physically inspired optimization algorithm", Comput. Struct., 167, 69-85. https://doi.org/10.1016/j.compstruc.2016.01.008
  27. Kaveh, A. and Farhoudi, N. (2013), "A new optimization method: dolphin echolocation", Adv. Eng. Softw., 59, 53-70. https://doi.org/10.1016/j.advengsoft.2013.03.004
  28. Kaveh, A. and Ilchi Ghazaan, M. (2014), "Enhanced colliding bodies optimization for design problems with continuous and discrete variables", Adv. Eng. Softw., 77, 66-75. https://doi.org/10.1016/j.advengsoft.2014.08.003
  29. Kaveh, A. and Khayatazad, M. (2012), "A novel meta-heuristic method: ray optimization", Comput. Struct., 112-113, 283-294. https://doi.org/10.1016/j.compstruc.2012.09.003
  30. Kaveh, A. and Mahdavi, V.R. (2014a), "Colliding bodies optimization: A novel meta-heuristic method", Comput. Struct., 139, 18-27. https://doi.org/10.1016/j.compstruc.2014.04.005
  31. Kaveh, A. and Mahdavi, V.R. (2014b), "Colliding bodies optimization method for optimum design of truss structures with continuous variables", Adv. Eng. Softw., 70, 1-12. https://doi.org/10.1016/j.advengsoft.2014.01.002
  32. Kaveh, A. and Mahdavi, V.R. (2014c), "Colliding Bodies Optimization method for optimum discrete design of truss structures", Comput. Struct., 139, 43-53. https://doi.org/10.1016/j.compstruc.2014.04.006
  33. Kaveh, A. and Mahdavi, V.R. (2015), Colliding Bodies Optimization; Extensions and Applications, Springer International Publishing, Switzerland.
  34. Kaveh, A. and Talatahari, S. (2010), "A novel heuristic optimization method: charged system search", Acta Mech., 213, 267-289. https://doi.org/10.1007/s00707-009-0270-4
  35. Kaveh, A., Ilchi Ghazaan, M. and Bakhshpoori, T. (2013), "An improved ray optimization algorithm for design of truss structures", Period Polytech., 57(2), 1-15.
  36. Khot, N.S. and Berke, L. (1984), Structural optimization using optimality criteria methods.
  37. Mirjalili, S., Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Softw., 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008
  38. Montes, E.M. and Coello, C.A.C. (2008), "An empirical study about the usefulness of evolution strategies to solve constrained optimization problems", Int. J. General. Syst., 37, 443-473. https://doi.org/10.1080/03081070701303470
  39. Perez, R.E. and Behdinan, K. (2007), "Particle swarm approach for structural design optimization", Comput. Struct., 85, 1579-1588. https://doi.org/10.1016/j.compstruc.2006.10.013
  40. Pianosi, F. and Wagener, T. (2015), "A simple and efficient method for global sensitivity analysis based on cumulative distribution functions", Environ. Modell. Softw., 67, 1-11. https://doi.org/10.1016/j.envsoft.2015.01.004
  41. Plischke, E., Borgonovo, E. and Smith, C.L. (2012), "Global sensitivity measures from given data", Eur. J. Oper. Res., 226, 536-550.
  42. Ragsdell, K.M. and Phillips, D.T. (1976), "Optimal design of a class of welded structures using geometric programming", ASME J. Eng. Indust., 98(Ser. B), 1021-1025. https://doi.org/10.1115/1.3438995
  43. Rahman, S. (2011), "Global sensitivity analysis by polynomial dimensional decomposition", Reliab. Eng. Syst. Saf., 96, 825-37. https://doi.org/10.1016/j.ress.2011.03.002
  44. Rastrigin, L.A. (1963), "The convergence of the random search method in the extremal control of a many parameter system", Autom. Remote Control, 24(10), 1337-1342.
  45. Sadollah, A., Bahreininejad, A., Eskandar, H. and Hamdi, M. (2012) "Mine blast algorithm for optimization of truss structures with discrete variable", Comput. Struct., 102, 49-63.
  46. Saka. M.P. (1990), "Optimum design of pin-jointed steel structures with practical applications", J. Struct. Eng., ASCE, 116, 2599-2620. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:10(2599)
  47. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M. and Tarantola, S. (2010), "Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index", Comput. Phys. Commun., 181, 259-270. https://doi.org/10.1016/j.cpc.2009.09.018
  48. Soh, C.K. and Yang, J. (1996), "Fuzzy controlled genetic algorithm search for shape optimization", J. Comput. Civil Eng., ASCE, 10, 143-150. https://doi.org/10.1061/(ASCE)0887-3801(1996)10:2(143)
  49. Talbi, E.G. (2009), Metaheuristics: From Design to Implementation, Wiley & Sons, Hoboken, New Jersey, USA.
  50. Yang, X.S. (2010), Nature-inspired meta-heuristic algorithms, Luniver Press, 2nd Edition, UK.
  51. Zhai, Q., Yang, J. and Zhao, Y. (2014), "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study", Reliab. Eng. Syst. Saf., 131, 66-82. https://doi.org/10.1016/j.ress.2014.06.013

Cited by

  1. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy 2017, https://doi.org/10.1080/0305215X.2017.1359585
  2. Numbers Cup Optimization: A new method for optimization problems vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.465
  3. Modeling for the strap combined footings Part I: Optimal dimensioning vol.30, pp.2, 2016, https://doi.org/10.12989/scs.2019.30.2.097
  4. Hybrid Invasive Weed Optimization-Shuffled Frog-Leaping Algorithm for Optimal Design of Truss Structures vol.44, pp.2, 2016, https://doi.org/10.1007/s40996-019-00280-0
  5. Plasma generation optimization: a new physically-based metaheuristic algorithm for solving constrained optimization problems vol.38, pp.4, 2021, https://doi.org/10.1108/ec-05-2020-0235