DOI QR코드

DOI QR Code

원자로 상부 헤드 관통관 TOFD 신호 시뮬레이션

Simulation of Time of Flight Diffraction Signals for Reactor Vessel Head Penetrations

  • 이태훈 (한국수력원자력(주) 중앙연구원) ;
  • 김용식 (한국수력원자력(주) 중앙연구원) ;
  • 이정석 (한국수력원자력(주) 중앙연구원)
  • 투고 : 2016.07.21
  • 심사 : 2016.08.08
  • 발행 : 2016.08.30

초록

비파괴검사 분야에 대한 시뮬레이션은 다양한 결함에 대한 신호의 예측과 검사 절차 개발에 사용되어진다. 특히 비파괴검사 전용 시뮬레이션 툴인 CIVA는 정확도가 높고 빠른 계산이 가능하며, 비파괴평가 기술과 동일한 형태의 화면 표시와 시각적으로 개선된 3차원 그래픽 유저 인터페이스를 제공한다. CIVA 소프트웨어 개발자가 내부적으로 타당성 검증을 시행하겠지만, 사용 이전에 소프트웨어의 정확도를 평가하는 독립적인 유효성 검증 연구가 필요하다. 이러한 목적으로 이번 연구에서는 CIVA를 이용하여 원자로 상부 헤드 관통관 검사에 사용되는 보정시험편에 대하여 TOFD 신호를 시뮬레이션하고, 실제 검사 신호와 비교하여 시뮬레이션 신호의 정확도와 적용 범위에 대하여 검증하였다. 종합적으로, A-scan 신호, B-scan 이미지, 깊이 측정 측면에서 CIVA 시뮬레이션 결과와 실험 결과 간에 전반적으로 일치를 보였다.

The simulation of nondestructive testing has been used in the prediction of the signal characteristics of various defects and in the development of the procedures. CIVA, a simulation tool dedicated to nondestructive testing, has good accuracy and speed, and provides a three-dimensional graphical user interface for improved visualization and familiar data displays consistent with an NDE technique. Even though internal validations have been performed by the CIVA software development specialists, an independent validation study is necessary for the assessment of the accuracy of the software prior to practical use. In this study, time of flight diffraction signals of ultrasonic inspection of a calibration block for reactor vessel head penetrations were simulated using CIVA. The results were compared to the experimentally inspected signals. The accuracy of the simulated signals and the possible range for simulation were verified. It was found that, there is a good agreement between the CIVA simulated and experimental results in the A-scan signal, B-scan image, and measurement of depth.

키워드

참고문헌

  1. T.-H. Lee, C.-H. Cho and H.-J. Lee, "Simulation of eddy current testing signals using simulator software dedicated to nondestructive testing," Transactions of the Korean Society of Pressure Vessels and Piping, Vol. 10, No. 1, pp. 75-81 (2014)
  2. T.-H. Lee, C.-H. Cho and H.-J. Lee, "Simulation of eddy current testing signals using CIVA," Prcoeeding of 2014 Annual Spring Conference of KSNT, pp. 393-400 (2014)
  3. F. Foucher and P. Dubois, "Applications and recent evolutions of the CIVA simulation platform," 18th World Conference on Nondestructive Testing (2012)
  4. P. Calmon, S. Mahaut, S. Chatillo and R. Raillon, "CIVA: An expertise platform for simulation and processing NDT data," Ultrasonics, Vol. 44, pp. e975-e979 (2006) https://doi.org/10.1016/j.ultras.2006.05.218
  5. R. Raillon, G. Toullelan, M. Darmon, P. Calmon and S. Lonne, "Validation of CIVA ultrasonic simulation in canonical configurations," 18th World Conference on Nondestructive Testing (2012)
  6. Y. Kim, B. Yoon and S. Yang, "Development of reactor vessel head penetration performance deonistration system in Korea," Transactions of the Korean Society of Pressure Vessels and Piping, Vol. 10, No. 1, pp. 44-50 (2014)
  7. J.-S. Lee, T.-H. Lee and Y.-S. Kim, "A feasibility study for flaw detection in J-groove weld of reactor upper head penetration using time of flight diffraction UT technique," Transactions of the Korean Society of Pressure Vessels and Piping, Vol. 11, No. 2, pp. 1-5 (2015) https://doi.org/10.20466/KPVP.2015.11.2.001
  8. J. P. Charlesworth and J. A. G Temple, "Engineering Applications of Ultrasonic Time-of-Flight Diffraction," 2nd Edition, Research Studies Press Ltd., Baldock. Hertfordshire, England, pp. 20-25 (2001)
  9. E. Ginzel, "Ultrasonic Time of Flight Diffraction," 1st Edition, Eclipse Scientific Products Inc., Waterloo, Ontario, Canada, pp. 85-97 (2013)