

Byung-Won Min : Improvement of Smart Library Information Service System for SaaS-based Cloud Computing

Service
23

International Journal of Contents, Vol.12, No.4, Dec. 2016

Improvement of Smart Library Information Service System for SaaS-based
Cloud Computing Service

Byung-Won Min

Division of Information and Communication Convergence Engineering
Mokwon University, Daejeon, 302-729, Korea

ABSTRACT

For a library to be able provide information services and fulfill its function as a knowledge convergence center capable of
responding to various information demands, the development of next-generation information systems based on the latest information
and communication technology is needed. The development of mobile information services using portable devices such smart phones
and tablet PCs and information systems which incorporate the concepts of cloud computing, SaaS (Software as a Service),
annotation and Library2.0 is also required. This paper describes a library information system that utilizes collective intelligence and
cloud computing. The information system developed for this study adopts the SaaS-based cloud computing service concept to cope
with the shift in the mobile service paradigm in libraries and the explosion of electronic data. The strengths of such a conceptual
model include the sharing of resources, support of multi-tenants, and the configuration and support of metadata. The user services
are provided in the form of software on-demand. To test the performance of the developed system, the efficiency analysis and TTA
certification test were conducted. The results of performance tests, It is encouraging that, at least up to 100MB, the job time is
approximately linear and with only a moderate overhead of less than one second. The system also passed the level-3 or higher
criteria in the certification test, which includes the SaaS maturity, performance and application program functions.

Key words: Multi-tenants, Software on-demand, Cloud Computing, Smart Library Information System, SaaS.

1. INTRODUCTION

The change in the information environment caused by the
advance of information and communication technologies has
occasioned the need for new changes in the contents, systems
and services of libraries and data centers. The information
system in the Web 2.0 environment emphasizes the
participation, sharing and collaboration of users through Social
Network Services (SNS) such as Facebook, Twitter, Flicker
and blogs [1], [2]. Furthermore, the convenient mobility of
information services using smart phones and tablet PCs is
creating a ubiquitous environment in which information can be
utilized anywhere and anytime for decision making and
problem solving [3], [4].

 To perform the function of a knowledge convergence
center and thereby respond to a wide range of information
demands, the development of mobile information services
using portable devices such as smart phones and tablet PCs and
information system which incorporate the concepts of cloud
computing, SaaS, annotation and Library2.0 is required [5]-[8].
Furthermore, the collection of data produced by the relevant
agencies and digitalization of the collected data are needed to

* Corresponding author, Email: minfam@mokwon.ac.kr
Manuscript received Oct. 07, 2016; revised Nov. 01, 2016;
accepted Nov. 07, 2016

develop the contents services to cope with the changing
information environment [9]-[11].

Many From a library perspective, as the advancement of
computer and communication technology is making the
Internet universally available, the ubiquitous environment, in
which users can utilize contents anywhere and anytime while
surfing on the sea of information, is realized. Users are using
digital libraries with home computers or mobile devices over
the wired and wireless networks. Such a ubiquitous
environment also demands a new infrastructure to support the
rapidly advancing terminals, networks and contents production
technology [12].

Currently, most library systems use the client/server and
ASP services for their software. However, such systems are
difficult to manage and require high operating costs because of
the problems related to high HW and SW purchasing costs,
installation and distribution, customization, upgrade, fault and
problem management, and expensive license royalties [13],
[14].

Furthermore, library systems are not widely accepted by
users as they are unable to create the information and
knowledge needed by them. Although library systems provide
useful information such as announcements, newly-arrived book
lists, Q&A, check-out status, recommended books, various
research data, and new database data, such information is
generally posted on the homepage as it is without filtering the

http://dx.doi.org/10.5392/IJoC.2016.12.4.023

24 Byung-Won Min : Improvement of Smart Library Information Service System for SaaS-based Cloud Computing
Service

International Journal of Contents, Vol.12, No.4, Dec. 2016

information given by the information creators. As such, these
systems are either difficult or limited for users.

Since the homepage provided to the users of a library
system is centered on the library instead of the users, it is
difficult even for users who are familiar with the library
homepage to find the necessary information.

This paper proposes a technology for designing and
deploying the smart library information system using collective
intelligence and cloud computing to provide the needed
information to the users by supplementing the problems
described above. This paper proposes a cloud-based integrated
digital library system to overcome the problems of the existing
digital library. It uses metadata to support customization for
users. It differs from conventional methods in that it supports
the tenants, which represent the user groups, with a software
instance. It solves the weakness of ASP, which is not only
costly to customize but also cannot take advantage of economy
of scale because it loads each instance individually.
Furthermore, there is very little initial investment since the
library functions are standardized and modularized. They are
designed and deployed as the cloud-based software on-demand
type service model to enable easy, simple and low cost IT
services.

2. Next-Generation Library Information Service Utilizing
Collective Intelligence and Cloud Computing

2.1. Definition

The library information service of the future must go
beyond just providing passive and simple knowledge
accumulation and become a smart library that facilitates active
knowledge creation and provides services through collective
intelligence. Fig.1 shows the basic concept of a smart library.

Most libraries nowadays create a wide range of
information and provide it to users in addition to managing the
information. Although libraries provide user training,
announcements, etc. through their homepages, the information
is often not delivered to users. However, some libraries recently
adopted Web 2.0 to provide information, and that helped to
properly deliver information to users. Therefore, which
information to create and provide to the users has become a key
issue for libraries. If libraries only continue providing
information on new arrivals, announcements and databases,
they may not gain the attention of users.

Fig. 1. Overview of Smart Library

Therefore, the future library information service must be a
smart library which combines the existing library system
functions with the knowledge-based e-learning system to
develop creative human resources. It must be a system that
enables the participants to develop their collective intelligence-
based learning knowledge base using a collaborative and
interactive interface, and which promotes self-managed
learning to improve the creativity and logical thinking of the
student.

While the existing library information service emphasizes
the 1:n online knowledge service provided by library personnel,
the smart library system can create, validate and categorize
knowledge using collective intelligence group and provide
intelligent knowledge, realistic knowledge, customized
knowledge, and hands-on knowledge.

Furthermore, it enables contents sharing and interchanges
of opinions using collective intelligence. The learning contents
and knowledge base developed by collective intelligence can
improve the national knowledge resource competitiveness, and
smart tutoring in the next-generation e-learning environment
can help achieve the national policy goals of developing
creative human resources, improving public education,
reducing private educational expenses, achieving a more
balanced distribution of learning opportunities, and overcoming
the gap between regions and social classes.

The smart library can play a central role in improving the
country's position as a knowledge powerhouse in the era of the
knowledge-based society by realizing nationwide lifelong
learning and raising the educational level of the general public.
The application of ubiquitous technology will enable the
building of student-centered learning spaces and the
restructuring of classrooms, and promote collaboration and
cooperation between government agencies on the construction
of a ubiquitous-based lifelong learning system.

2.2. Smart Library information service system

The main reason why users do not actively respond to the
information provided by libraries is that the latter have failed to
create the information and knowledge needed by them.
Although the library system provides useful information such
as announcements, newly-arrived book lists, Q&A, check-out
status, recommended books, various research data, and new
database data, such information is generally posted on the
homepage as is without filtering the information given by the
information creators. As such, it is difficult to use or somewhat
limited as far as users are concerned.

The smart library system of the future must allow the
collective intelligence group to reprocess information so that
users can easily understand and solve such problems. New
tools designed for the efficient delivery of library knowledge
and information must also be developed. Fig.2 below is a
schematic diagram of a smart library service.

The library information service of the future must be
developed with a new system so as to feature useful
information/knowledge and to deliver it efficiently. If libraries
do not create information and knowledge that promote library
use, there will be no change in the user's perception of the
library. Libraries must now extend the role of the service at the
information management level to that of a knowledge base

Byung-Won Min : Improvement of Smart Library Information Service System for SaaS-based Cloud Computing

Service
25

International Journal of Contents, Vol.12, No.4, Dec. 2016

convergence repository to create and manage information and
knowledge. Information and knowledge must go beyond being
only of a guidance nature to stimulate users’ desire to learn and
to promote interest in libraries’ data.

As shown in Fig.2, a smart library information service
system provides the service converged with the intelligent
tutoring system, as well as adding an intelligent learning engine,
collective intelligence interactive interface, knowledge-base
manager, and open framework technology to the conventional
library information service system.

Fig. 2. Smart Library System Service Schematic Diagram

An ‘intelligent learning engine’ is an engine that improves

students’ creativity and logical thinking by providing them with
the optimum learning process and knowledge contents
intelligently, supporting the repetitive/dynamic learning process,
and diagnosing their cognitive affective nature, thereby
enabling them to engage in self-managed, explorative learning.

A ‘knowledge base manager’ is a management tool
designed to systematically manage collective intelligence
knowledge and to accurately and quickly search such
knowledge in order to provide a self-managed and explorative
learning environment.

A ‘collective intelligence interactive interface’ is an
interface that supports experts’ efforts to create knowledge
content, provides various visualizations of the created
knowledge, and supports interactive interaction between the
users and the system.

An ‘open e-learning interoperable framework’ is a
framework that provides a platform for e-learning
interoperability and integrates legacy services.

An ‘intelligent collective intelligence interactive learning
agent’ promotes learning and teaching to improve creativity and
logical thinking by providing an interactive interface that
promotes cooperation among the participants, a tutoring
operation model for collective intelligence and cooperative
learning, and augmented reality, virtual reality and explorative
learning pattern analysis.

The ‘learning platform and teaching/learning strategy
model that supports the intelligent knowledge and
composite/dynamic/adaptive learning model’ provides a
learning platform through which students can receive the
optimum education by dynamically restructuring and delivering
the learning model - such as the learning contents, progress and

instructor - according to the student’s level, achievements, and
inclination, as well as the level of difficulty of the contents.

Therefore, a smart library system is a next-generation,
integrated learning system designed to cultivate and develop
creative human resources. It is an intelligent tutoring system
that uses a cooperative interactive interface to build a collective
intelligence-based learning knowledge base and induce/support
students’ self-managed learning in order to improve their
creativity and logical thinking.

3. Development of the Smart Library Information Service
System

3.1 LinkSaaS Application Platform

LinkSaaS Application Platform is software infrastructure
designed to tame the data deluge with cost-effective,
supercomputer-like capacity to process, transform, and indeed
channel it for our benefit. It does this by leveraging the spare
capacity of computing resources on the “edge” of the Internet –
resources which generally use only a small fraction of their
capacity even when busy and are available for marginal
operating cost and environmental impact – and allowing users
and developers to combine and coordinate them in novel,
dynamic ways. In order to assure the safety of these edge
resources, LinkSaaS Application Platform builds upon Java
applets, the best established security context for running
untrusted, third-party code on the Internet; the use of this
technology also seamlessly extends the reach of LinkSaaS
Application Platform across different platforms, operating
systems, and even enterprises. In principle, the LinkSaaS
Application Platform network could encompass all the world’s
network-attached computers, providing an aggregate capacity
100 times greater than the 500 most powerful supercomputers
combined.

The purpose of the LinkSaaS architecture is twofold: first,
LinkSaaS is designed to increase the productivity of the
installed base of computing devices. As noted above, most of
the computers in the world use very little of their computing
capacity even when “busy”, e.g., editing a letter or spreadsheet,
or browsing the Web. LinkSaaS aims to harness this spare
capacity for general computing. However, there are significant
technical obstacles to realizing this purpose. For this reason,
LinkSaaS is designed to be simple to join, leave, and
administer, with the resource owners remaining firmly in
control of their computers; moreover, it must satisfy reasonable
security expectations for running untrusted, third-party code.

Second, LinkSaaS is intended to increase the productivity
of developers creating new applications for this large network.
Distributed programming historically has been problematic and
fraught with tedious details – in short, not usually worth the
effort except in extreme cases. The easiest situation is where
the developer only has a single computer cluster under his
influence, but this cluster may not be large enough. Once
administrative boundaries are crossed, even within the same
organization, the developer must now keep track of a variety of
configurations, accounts, and security mechanisms. In addition,
the code usually has to be built and installed on platforms
which all differ, even if only slightly (hence the tedious details).

26 Byung-Won Min : Improvement of Smart Library Information Service System for SaaS-based Cloud Computing
Service

International Journal of Contents, Vol.12, No.4, Dec. 2016

The code then has to be activated, and the network
configuration itself, such as the presence of firewalls, must be
considered.

LinkSaaS addresses the above problem by specifying a
streamlined environment for programming and deploying code
across the network based on Java applets. This environment
will be described in greater detail below. With LinkSaaS,
developing, deploying, and provisioning a large-scale network
application becomes realistic and practical.

3.1.1 Description

In this section, the LinkSaaS architecture is described. Its
components are described first, followed by descriptions of
how developers, users, and administrators see the resulting
system. Every attempt has been made to keep LinkSaaS simple
and straightforward to join, leave, program, and administer.

The LinkSaaS network itself provides a basic
infrastructure which makes the network programmable much
like a peer-to-peer network while still respecting administrative
constraints. It is not intended to make a distributed system look
like a single computer; the authors suggest that this level of
abstraction is best approached through software built on the
LinkSaaS infrastructure. Moreover, the single computer
abstraction is neither necessary nor appropriate in many
circumstances; instead, programmers should be free to use the
network creatively, and to construct network configurations
appropriate to the nature and scale of the problems they are
tackling.

To the extent of the LinkSaaS architecture is based on
services which can be combined to form other services, it will
be seen to bear some relation to a service-oriented architecture
(SOA). However, LinkSaaS services do not have to reside on
big, expensive servers; instead, they are provisioned by
resources on the edge of the network. Also, unlike a typical
SOA, LinkSaaS specifies a streamlined remote service
deployment model, facilitating dynamic, highly distributed
service provision; it thus relieves the programmer of some of
the most tedious aspects of practical distributed programming.

Furthermore, LinkSaaS relies on the Java Virtual Machine
(JVM), with its built-in security mechanisms, to accomplish
remote deployments safely; it should be noted that Java applets
have been running untrusted, third-party code in web browsers
for over ten years. The JVM allows compiled code to run under
Windows, Linux, Mac OS, and a number of other, less familiar
operating systems, as well as on hardware ranging from the
typical x86-based PC to an ARM-based mobile phone. The
speed penalty for running code in the JVM has also largely
vanished due to HotSpot runtime compilation into native
machine code. By building on Java technology, LinkSaaS can
offer secure, high-performance, cross-platform computing.

3.1.2 Components

Fig.3 shows a block diagram of a LinkSaaS network. The
LinkSaaS network is divided into administrative domains, each
of which can have one or more LinkSaaS servers. Each server
is in turn connected to the Internet, through which it
communicates with other servers as well as generic web servers.
LinkSaaS clients then connect to one or more LinkSaaS

servers; in principle, they could connect to servers in different
domains, if their network access allows it.

It can be seen that the LinkSaaS network is an overlay
network built, firstly, on the Internet itself. LinkSaaS servers
are identified publicly by their Internet addresses, and since
LinkSaaS servers and domains are fundamentally independent
of one another, the LinkSaaS network is scalable in the same
sense that the Internet itself is scalable. The network within a
LinkSaaS domain may be different, however, and the clients
may or may not have direct access to the Internet – for instance,
because of a firewall, or its implementation on a proprietary
network. Even so, the LinkSaaS clients will remain accessible
to LinkSaaS network operations.

Fig. 3. Block diagram of the LinkSaaS network, showing servers,

clients, and application/web servers.

3.1.3 LinkSaaS Server

The LinkSaaS server is the lynchpin of the LinkSaaS
network: clients join the LinkSaaS network by connecting to a
server, and the server acts as a proxy for the clients in
communication with the wider network as well as with other
clients (Fig. 4).

Fig. 4. Examples of communications in a LinkSaaS network, showing

the central role of the LinkSaaS servers

In this way, the clients can communicate with the wider

network even if they are protected behind a firewall – only the
server need be exposed to the wider world. Within an
administrative domain, a LinkSaaS server should be maintained
and monitored as any central service, such as an e-mail service
or an institutional web server. In turn, because of its central role
in the LinkSaaS network, the server can act as an
administrative control point for its clients, monitoring
LinkSaaS bandwidth usage and limiting it if necessary.

Byung-Won Min : Improvement of Smart Library Information Service System for SaaS-based Cloud Computing

Service
27

International Journal of Contents, Vol.12, No.4, Dec. 2016

Thus, even though clients can communicate with one
another as if they were participating in a peer-to-peer network,
the administrator can maintain a useful degree of control over
their resource usage. The LinkSaaS architecture therefore
addresses the common shortcomings in peer-to-peer network
operation.

The LinkSaaS server manages the namespace of its
domain, or, in other words, it assigns names to the clients
connected to it. These names are globally unique by
construction as long as LinkSaaS servers maintain unique IP
addresses – which is an assumption of the Internet itself.

3.1.4 LinkSaaS Client

LinkSaaS clients are the workhorses of the LinkSaaS
network: they are the programmable elements out of which
developers create applications. The client itself is a program
which runs on a host computer: it can be started from a web
browser (applet client), run as a user program (stand-alone
client), or installed as a persistent service (enterprise client). It
is possible to have several clients running on a single computer;
each client will have a unique identifier with which it identifies
itself to the LinkSaaS server.

As noted above, a LinkSaaS client downloads its first
service descriptor from a LinkSaaS server. This service
descriptor tells the LinkSaaS client what to install in its root
container. In the case of a stand-alone or enterprise client, the
client can connect to more than one server simultaneously,
initializing a root container with a different service descriptor
for each – since each LinkSaaS server, potentially in different
administrative domains, may implement different domain
policies. It is the responsibility of the LinkSaaS server to decide
whether or not to accept a connection from a particular
LinkSaaS client.

The security context of an applet client is shown in Fig.5.
In this case, the entire LinkSaaS client is encapsulated within a
Java applet and its Security Manager.

Fig. 5. LinkSaaS applet client security context. The service is prevented

from reading local files or making arbitrary Internet connection

3.1.5 LinkSaaS Application Server

LinkSaaS clients are able to access normal web resources
via the LinkSaaS server. This feature allows them to access not
only the whole World Wide Web for information or other
functionality, but it also allows the developer a convenient
method to control his application.

As noted above, LinkSaaS does not specify a particular
application model, but a particularly simple model, used
already for several applications, consists of a web server (the
application server) which provides a work queue and a user
interface through which a user submits to it. Clients are set up
to poll the application server with simple HTTP GET requests
for work to do. Results can be sent back via HTTP POST
operations or stored until fetched and cleared by the application
server.

The application server is not a part of the LinkSaaS
network per se, and indeed can be written without any
reference to LinkSaaS code; its interaction with LinkSaaS
clients can be managed entirely through normal web and socket
connections made through the LinkSaaS server. The server
therefore could be implemented using simple CGI scripts on an
existing web server, though more flexibility may be obtained
by using streamlined web server infrastructure software such as
Grizzly or LinkSaaS’s own NIONetworkHandler class. It
should also be noted that a LinkSaaS service could also
function as the application server.

3.1.6 LinkSaaS Service

A LinkSaaS service is a program that can be installed and
run on a LinkSaaS client. Services can perform data processing,
serve web content, and communicate with other services or
external web sites. In addition, a LinkSaaS service can create
child containers into which other LinkSaaS services can be
installed.

It is worth noting the terminology: a LinkSaaS service
runs on a LinkSaaS client, not a server. However, it can be said
that a LinkSaaS server (which after all provides the root of the
service’s public URL) is what offers the service – even though
the actual execution of the service is on another computer.

A LinkSaaS service is initialized by pointing the client to a
web-accessible service descriptor in the form of an NML
document. This descriptor can be located on any web server,
not necessarily the application server or any LinkSaaS server
(though the NML document describing the root container
resides on the LinkSaaS server by design).

The LinkSaaS Markup Language (NML) has an XML-like
syntax, with three tags defined:

• <LinkSaaS-app> defines the application’s name and
encompasses all the classloaders and services it uses.

• <classloader> defines the location of class hierarchies and
JAR files for services defined within its scope.

• <service> defines an actual service with a name and a main
class. Data between the opening and closing tags are passed to
the service’s initialization method as a character sequence
(CharSequence).

The <classloader> tag is optional; any services defined
outside a <classloader> scope is assumed to find classes
starting from the service descriptor’s URL directory. It is often
convenient for any necessary class or JAR files to reside
alongside the

service descriptor, but the <classloader> tag allows
applications to draw upon classes from a variety of sources.

An example of an NML document describing a
CommandService, an often-used root container, is shown
below.

28 Byung-Won Min : Improvement of Smart Library Information Service System for SaaS-based Cloud Computing
Service

International Journal of Contents, Vol.12, No.4, Dec. 2016

In this example, the application is called “command”, and
its Java classfile is found relative to the server’s default web
directory. The data between the <service> tags (in this case a
primitive authorization string) is passed to the service on
initialization.

An NML document can describe multiple services with
different code sources. Services may be combined into larger
services by including references in the initialization data,
whether to other service names within the same NML
document, or using URL’s of external services. An “auto-
configuration” LinkSaaS service may be employed to generate
further service descriptions as needed.

Fig. 6. NML document for CommandService descriptor

3.1.7 LinkSaaS Api

The API of a LinkSaaS service is much like that of a Java
applet: if it is deployed in a standard JRE, then it can use any of
that JRE’s libraries. However, the usual applet security
restrictions apply: it cannot modify system properties, cannot
access the local filesystem directly, and cannot open network
connections except to the server from which the applet was
originally downloaded. Actions beyond these must be
authorized by the client (and by implication, the user) through
Java’s extension mechanism.

The most basic LinkSaaS service interface
(LinkSaaSService) specifies only an init() entrypoint, which is
called when the service is created. The name of the service is
determined by the service descriptor; the client delegates
URL’s with this path element to the service.

An AbstractService class has been provided to make it
easier to write new LinkSaaS services. AbstractService
provides two abstract entrypoints, prepareToListen() and
handleConnection(). prepareToListen() is invoked when the
service is created (it is invoked by the AbstractService.init()
method). handleConnection(), on the other hand, is called
whenever a connection is made to the service from the outside,
including the times when a user clicks into the service through
the LinkSaaS server.

Because of the LinkSaaS client’s applet-like constraints,
several methods have been provided in AbstractService to
facilitate communication with the outside world. First, println()
and printErr() methods have been provided to print messages to
the output and error panels in the LinkSaaS client’s user
interface. Web access must be redirected through the LinkSaaS
server, which serves as a web proxy for its clients: a
createRedirectedURI() method is provided to create the proxy
URL from an original URL. A socket proxy is also provided.

The common application pattern described above is
implemented on the service side by using prepareToListen() to
create a new thread which periodically polls the application
server (whose web address has been transformed by
createRedirectedURI()) for work to do. In this case,
handleConnection() can be used by the application server to
fetch stored results, or by other LinkSaaS services to fetch

intermediate results. It can also respond to requests for status
information, for instance by users clicking through the
LinkSaaS server web page.

3.1.8 LinkSaaS network and namespace

One of the key benefits of the LinkSaaS network to
network programming is to define a straightforward namespace
by which elements of the network can be addressed. The
LinkSaaS namespace consists of URL’s, all of which are valid
for public web access.

Each LinkSaaS server has a public URL such as
http://domain1/, where “domain1” refers to the LinkSaaS
server host. Since a LinkSaaS domain will typically have one
or a few LinkSaaS servers, and policies are determined on a
domain level and implemented by the servers, it is appropriate
(though not necessary) to designate LinkSaaS servers with
domain names. Since the LinkSaaS servers are publicly
accessible Internet nodes, their names must be registered in the
normal way.

The LinkSaaS server provides several web pages, such as
http://domain1/clients, which lists the clients connected to it.

When clients connect to a LinkSaaS server, it creates a
root container into which the default service, described by
DomainRoot.nml, is installed. This service is addressed by
appending the client alias to the clients subdirectory of the
server URL, e.g., http://domain1/clients/client5. The client then
delegates the interpretation of any further path elements to the
service. Thus, if the service has created child containers in
which it has installed services, those services are referred to in
further path elements.

In principle, the entire LinkSaaS namespace is accessible
via the Web. If a service needs to address another service, it
creates a redirected URL out of the other service’s public URL,
just as if it was a normal web resource.

3.1.9 LinkSaaS Application

Software delivered as a service offers distinct advantages
over software delivered by more traditional means: it is
frequently mobile, web-based, centrally managed, and nearly
free of troublesome installations and patches. In its simplest
form, the architecture implied by these features consists of
many clients attached to a large server infrastructure.
Increasing numbers of users as well as improved functionality
generally impact the server load and therefore drive server
requirements, with increasingly expensive outcomes. Reducing
server load therefore decreases the overall cost of the system,
but risks substantially increasing operational costs.

Fig. 7. Interactions within a LinkSaaS application

Byung-Won Min : Improvement of Smart Library Information Service System for SaaS-based Cloud Computing

Service
29

International Journal of Contents, Vol.12, No.4, Dec. 2016

3.2 Consideration
To provide a user service that emphasizes Web service

search, accessibility and usability, contents creation and
recombination, interoperability and a personalized service, the
smart library must be developed within the concept of Web 2.0
and Library 2.0.

To develop a smart library information service system, an
open Web conforming to the W3C standard is needed first of all.

• Web page supporting all browser versions of Netscape 7.x,
MS IE 6.x, and Firefox 1.x or higher (cross browsing
supported)

• Various operating environments: Web accessibility and
usability

• Web service environment with consideration to generality
and scalability

• Standardization: Mutual interfaces of the Web service and
integrated usage

•“Administrative Agency Homepage Development/Operation
Standard Guidelines"

•“W3C (Worldwide Web Consortium) Web Standard
Technology Recommendations”

• Web service standard architecture: XML, UDDI, WSDL,
and REST

•“Information System Development/Operation Technical
Guidelines 2.0"

Secondly, various mash-up services using open API
(Application Programming Interface) must be considered.
Lastly, user authentication and access privilege management
must be provided using the homepage login linking (SSO).

4. Analysis of the Performance of the Proposed System

4.1 Test Items
In this As shown in Table 1, the various items for the TTA

certification test of the proposed smart library information
service system comprise four items in SaaS maturity, three
items in performance, and thirteen items in application program
function.

The SaaS maturity test items include multi-tenant support,
same code support, customizing support, and data sharing
support. The performance test items include the CPU utilization
rate, memory utilization rate, and response time. The
application program performance test items include the
received book system, catalog system, inspection system,
academic journal table of contents system, periodicals, original
document copying service, system management, DL contents
management, research report management, contents
management, original copy management service, ETM service,
and general user service.

Table 1. Test Items

Item Details

SaaS Maturity
-. Multi-tenant support, Same code support
-. Customizing support, Data sharing support

Performance
-. CPU utilization rate, Memory utilization rate
-. Response time

Application
Program Function

-. Received book system, Catalog system
-. Inspection system, Periodicals
-. Academic journal table of contents system
-. Original document copying service
-. System management
-. DL contents management,
-. Research report management
-. Contents management, General user service
-. Original copy management service

4.2 Test Result

Table 2. shows the results of the TTA certification test. It
indicates that each item of the cloud-based smart library
information service system operates normally.

Table 2. Test Result

Performance Test Item Unit Measurement

1. SaaS Maturity Model Level Level 3

① Connection Instance N (customer): 1 (instance)

② Provided program Code Same code

③ Customizing Configuration
Configurable by the

customer for each tenant

④ Economy of scale Yes/No Yes (instance sharing)

⑤ Scaling Yes/no
Replacement to better

performing system

⑥ Data Format Data sharing

2. Performance Test Class Class A

① CPU utilization rate % 8% or less

② Memory usage Byte 500MB or less

③ Response time Sec 1 Sec

④ Portability Yes/No Yes

The results of performance tests, from searching text

without the benefit of an index, are shown in Fig. 8. It is
encouraging that, at least up to 100MB, the job time is
approximately linear and with only a moderate overhead of less
than one second.

Fig. 8. Job performance of Smart Library application

6. CONCLUDING REMARKS

The greatest problem concerning library homepages up
until now has been that they are not centered on the users but
on the library, which is the information provider. As a result, it

30 Byung-Won Min : Improvement of Smart Library Information Service System for SaaS-based Cloud Computing
Service

International Journal of Contents, Vol.12, No.4, Dec. 2016

is not easy even for users familiar with the library homepage to
find the desired information on the homepage, which suggests
that the use of the various electronic data provided by a library
homepage is not that high, particularly because the users still
perceive books as the main source of information provided by
libraries.

To solve this problem, this paper emphasizes that the new
Web 2.0 based library service needs to break away from simply
acting as an information manager and play the role of
information and knowledge producer. To that end, this paper
presents the smart library information service system as a
means for libraries to produce and provide information and
knowledge centered on the users through its library homepage.

Currently, most library systems use client/server and ASP
services for their software. However, such systems are difficult
to manage and incur high operating costs because of the
problems related to high HW and SW purchasing costs,
installation and distribution, customization, upgrade, fault and
problem management, and expensive license royalties.

To solve such problems, this study developed the key
elements for deploying the cloud-based digital library system in
the multi-tenant environment. The system was deployed with
the SaaS-based software on-demand type service model, which
requires only a small initial investment, is simple and easy to
use, and delivers a low cost IT service.

REFERENCES

[1] H. S. Shin, Understanding MS Cloud Computing and the
Edger Service Platform, ZDNet Korea, Dec. 2008.

[2] Y. M. Kim, “The Web-Based SaaS Platform,” 2008.12.17.
http://www.software.or.kr/ICSfile/afieldfile/2008/12/18/5.
pdf

[3] Digital Times, “SaaS and the Future of Software,”
2006.5.4.

[4] S. H. Han, “Study of Thesaurus Updating Using Collective
Intelligence,” Journal of the Korea Society for Information
Management, vol. 26, no. 4, Sep. 2009, pp. 25-43.

[5] http://www.naver.com
[6] S. J. Kwak, Study of the National Library Operation Plan,

The National Library of Korea, Mar. 2011.
[7] B. H. Yang, “Web 2.0-Based Library information

service,” Information Management Studies, vol. 39, no. 1,
2008, pp. 199-220.

[8] Sasan Adibi, “Data Mining - A Captured Wired Traffic
Approach,” IJAST, vol. 21, Aug. 2010, pp. 11-30.

[9] Ploypailin Intapong, Sittapong Settapat, Boonserm
Kaewkamnerdpong, and Tiranee Achalakul, “Modular
Web-Based Collaboration Platform,” IJAST, vol. 22, Sep.
2010, pp. 37-48.

[10] Dinesh C. S. Bisht and Ashok Jangid, “Discharge
Modelling using Adaptive Neuro - Fuzzy Inference
System,” IJAST, vol. 31, Jun. 2011, pp. 99-114.

[11] B. W. Min and Y. S. Oh, “Design of the SaaS Platform-
Based Integrated Digital Library System,” Proceedings of
the Korea Contents Association 2010 Spring Symposium,
2010, pp. 447-449.

[12] B. W. Min, H. Y. Oh, and Y. S. Oh, “Improvement of the
SaaS-Based Digital Library Integrated Management Service
System,” Proceedings of the KOCON 2011 Spring Integrated
International Digital Design Exhibition, 2011, pp. 3-4.

[13] B. W. Min and Y. S. Oh, “Implement of Integrated
Management System for Digital Library Supporting Multi-
tenent Environment Based on SaaS,” Journal of the Korea
Contents Association, Vol. 11, No. 5, 2011, pp.93-103.

[14] H. Y. Oh, B. W. Min and Y. S. Oh, “User Customized
Web Interface Design optimized for SaaS-based Digital
Library System,” Journal of the Korea Contents
Association, vol. 11, no. 5, 2011, pp. 148-156.

Byung-Won Min
He He received M.S degree in computer
software from Chungang University,
Seoul, Korea in 2005. He worked as a
professor in the department of computer
engineering, Youngdong University,
Youngdong, Chungbuk, Korea, from
2005 to 2008. He received Ph.D. degrees

in Information and Communication Engineering from Mokwon
University, Daejeon, Korea, in 2010, respectively. His research
interests include digital communication systems, information
theory and their applications.

