DOI QR코드

DOI QR Code

졸-겔 법을 통한 수분산형 폴리우레탄 합성 및 가교밀도 개선에 따른 성능 연구

The Effect of Improved Crosslink Density on the Properties of Waterborne Polyurethanes Using Sol-Gel Process

  • 김영렬 (부경대학교 공업화학과) ;
  • 박진환 (부경대학교 공업화학과)
  • Kim, Young Ryul (Department of Industrial chemistry, Pukyong national university) ;
  • Park, Jin Hwan (Department of Industrial chemistry, Pukyong national university)
  • 투고 : 2016.12.15
  • 심사 : 2016.12.23
  • 발행 : 2016.12.31

초록

Water-based systems are dominating the coating market because of worldwide VOCs regulations. Research is focusing especially on waterborne polyurethane (WPU) because of its unique mechanical and chemical properties. However, commercial WPU consists of linear thermoplastic polymers with polar groups on the main chain, which do not perform as well as solvent-borne PU in a two-pack system. In this study, APTES were used as a chain crosslink agent to overcome commercial WPU's limited performance. WPUs synthesized by using a sol-gel process were evaluated with FT-IR, particle analysis, TGA, tensile tests, pull-off tests, SEM, and EIS. The results showed that WPUs with added APTES had better thermal stability, mechanical properties, and water resistance than did WPUs without added APTES. Consequently, the sol-gel process increased the crosslink density of WPUs and modified the WPU's own properties.

키워드

참고문헌

  1. H. Sardon, L. Irusta, M. J. Fernandez-Berridi, M. Lansalot, and E. Bourgeat-Lami, Polymer, 51, 5051 (2010). https://doi.org/10.1016/j.polymer.2010.08.035
  2. D. Dieterich, Prog. Org. Coat., 9, 281 (1981). https://doi.org/10.1016/0033-0655(81)80002-7
  3. H. sardon, L. Irusta, R. H. Aguirresarobe, and M. J. Fernandez-Berridi, Prog. Org. Coat., 77, 1436 (2013).
  4. D. K. Chattopadhyay and K.V. S. N. Raju, Prog. Polym. Sci., 32, 352 (2007). https://doi.org/10.1016/j.progpolymsci.2006.05.003
  5. J. E. Gray and B. Laun, J. Alloy. Compd., 336, 88 (2002). https://doi.org/10.1016/S0925-8388(01)01899-0
  6. X.-Y. Ma, W.-D. Zhang, Polym. Degrad. Stabil., 94, 1103 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.03.024
  7. J. Huybrechts, P. Bruylants, A. Vaes, and A. De Marre, Prog. Org. Coat., 38, 67 (2000). https://doi.org/10.1016/S0300-9440(00)00083-7
  8. Anti-Corrosion Coating Market - Global Trends Forecasts to 2019.
  9. B. Muller and U. Poth, Coatings compendia, 1 (2006).
  10. J. D. Wright, and N. A. J. M. Sommerdijk, Sol-gel Materials-Chemistry and Applications, Gordon and Breach Science, Amsterdam (2001).
  11. S. J. Peng, Y. Jin, X. F. Cheng, T. B. Sun, R. Qi, and B. Z. Fan, Prog. Org. Coat., 86, 1 (2015). https://doi.org/10.1016/j.porgcoat.2015.03.013
  12. J. Y. Lim, C. S. Lee, J. M Lee, J. Ahn, and H. H. Cho, J. H. Kim, J. Power Sources, 301, 18 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.109
  13. S. Subramani, J. M. Lee, J. -Y. Lee, and J. H. Kim, Polym. Advan. Technol., 18, 601 (2007). https://doi.org/10.1002/pat.860
  14. Y. Xia and R. C. Larock, Macromol. Rapid Comm., 32, 1331 (2011). https://doi.org/10.1002/marc.201100203
  15. L. lei, L. Zhong, X. Lin, Y. Li, and Z. Xia, Chem. Eng. J., 253, 518 (2016).
  16. A. Santamaria-Echart, A. Arbelaiz, A. Saralegi, and B. Fernandez-d'Arlas, A. Eceiza, M. A Corcuera, Colloid. Surface. A, 482, 554 (2015). https://doi.org/10.1016/j.colsurfa.2015.07.012