Bull. Korean Math. Soc. **53** (2016), No. 6, pp. 1913–1915 http://dx.doi.org/10.4134/BKMS.b160513 pISSN: 1015-8634 / eISSN: 2234-3016

CORRIGENDUM TO "REFLEXIVE PROPERTY ON IDEMPOTENTS" [BULL. KOREAN MATH. SOC. 50 (2013), NO. 6, 1957–1972]

TAI KEUN KWAK AND YANG LEE

In [2], Theorem 4.2 is incorrect, and so we here provide a correct theorem and proof.

Theorem 4.2. If R is a non-Abelian RIP ring of minimal order, then R is of order 16 and is isomorphic to $Mat_2(\mathbb{Z}_2)$ or the ring

$$S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Mat}_2\left(\frac{\mathbb{Z}_2[x]}{x^2 \mathbb{Z}_2[x]}\right) \mid a, d \in \mathbb{Z}_2 \text{ and } b, c \in (x + x^2 \mathbb{Z}_2[x]) \frac{\mathbb{Z}_2[x]}{x^2 \mathbb{Z}_2[x]} \right\}.$$

Proof. Let R be a non-Abelian RIP ring of minimal order. Then it is true that R cannot be local since local rings are Abelian. By the Wedderburn-Artin theorem, $R/J(R) \cong \sum_{i=1}^{n} \operatorname{Mat}_{k_i}(D_i)$ for some k_i 's and fields D_i 's. Here assume that $k_i = 1$ for all i. Then we have there cases of |J(R)| = 2, |J(R)| = 4, and |J(R)| = 8.

If |J(R)| = 8, then $R/J(R) \cong \mathbb{Z}_2$ and so R is local, a contradiction. Thus |J(R)| = 2 or |J(R)| = 4.

Let |J(R)| = 4. Then $R/J(R) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Since J(R) is nilpotent, there exist orthogonal nonzero idempotents e_1, e_2 with $e_1 + e_2 = 1$ (i.e., $e_2 = 1 - e_1$) by [3, Proposition 3.7.2], and moreover we have

$$R = \{x + y \mid x \in Id(R), y \in J(R)\},\$$

where $Id(R) = \{0, 1, e_1, e_2\}$. Then R is an RIP ring and moreover $R \cong S$ by the proof of [1, Proposition 2.7(1) and Theorem 2.11].

Let |J(R)| = 2. Then $R/J(R) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Since J(R) is nilpotent, there exist orthogonal nonzero idempotents e_1, e_2, e_3 with $e_1 + e_2 + e_3 = 1$ by [3, Proposition 3.7.2], and moreover we have

$$R = \{ x + y \mid x \in Id(R), y \in J(R) \},\$$

where $Id(R) = \{0, 1, e_1, e_2, e_3, 1 - e_1, 1 - e_2, 1 - e_3\}$. For every $r = x + y \in R$ with $x \in Id(R)$ and $y \in J(R)$, we have $e_i re_j = e_i ye_j$ for $i \neq j$ since $e_i xe_j = 0$. If $e_i ye_j \neq 0$ then $J(R) = \{0, e_i ye_j\}$. Thus $e_j J(R)e_i = 0$, and so $e_j Re_i = 0$

©2016 Korean Mathematical Society

1913

Received June 16, 2016.

since $e_j Id(R)e_i = 0$. But since R is RIP, we get $e_i Re_j = 0$ and this yields $e_i ye_j = 0$, a contradiction. Therefore we can conclude that

 $e_i Re_j = 0$ for all i, j with $i \neq j$.

Now suppose that eRf = 0 for $e, f \in Id(R)$. Then e and f are orthogonal each other, say $e = e_1$ and $f = e_2$. But since R is RIP, $e_2Re_1 = 0$ and so we get $e_2ye_1 = 0$ since $e_2xe_1 = 0$. This entails

 $r = (e_1 + e_2 + e_3)r(e_1 + e_2 + e_3) = e_1re_1 + e_2re_2 + e_3re_3.$

Since R is non-Abelian, e_k is non-central for some $k \in \{1, 2, 3\}$. If e_1 is non-central then there exists $s \in R$ such that $e_1s - se_1 \neq 0$. Note $e_1s - se_1 \in J(R)$. Then we have

$$e_1s - se_1 = (e_1 + e_2 + e_3)(e_1s - se_1)(e_1 + e_2 + e_3)$$

= $e_1(e_1s - se_1)e_1 + e_2(e_1s - se_1)e_2 + e_3(e_1s - se_1)e_3 = 0,$

a contradiction. Each case of $(e_2 \text{ is non-central})$ and $(e_3 \text{ is non-central})$ also induces a contradiction through a similar computation. The computations for other cases of e and f are also similar, inducing contradictions.

Summarizing, we have two cases of J(R) = 0 and |J(R)| = 4, and R is isomorphic to either Mat₂(\mathbb{Z}_2) (when J(R) = 0) or the ring S (when |J(R)| = 4).

In [2], Corollary 4.3 is incorrect, and so we here provide a correct expression.

Corollary 4.3. Let R be a ring with J(R) = 0. Then R is a non-Abelian RIP ring of minimal order if and only if R is a non-Abelian semiprime ring of minimal order if and only if R is a non-Abelian reflexive ring of minimal order if and only if R is a non-Abelian right idempotent reflexive ring of minimal order if and only if R is a non-Abelian left idempotent reflexive ring of minimal order.

References

- A. M. Abdul-Jabbar, C. A. K. Ahmed, T. K. Kwak, and Y. Lee, *Reflexivity with maximal ideal axes*, Comm. Algebra (to appear).
- [2] T. K. Kwak and Y. Lee, *Reflexive property on idempotents*, Bull. Korean Math. Soc. 50 (2013), no. 6, 1957–1972.
- [3] J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.

TAI KEUN KWAK DEPARTMENT OF MATHEMATICS DAEJIN UNIVERSITY POCHEON 11159, KOREA *E-mail address*: tkkwak@daejin.ac.kr

1914

Yang Lee Department of Mathematics Education Pusan National University Pusan 46241, Korea Current address: Institute of Basic Science Daejin University Pochen 11159, Korea *E-mail address*: ylee@pusan.ac.kr