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NOTES ON THE PAPER “A CRITERION FOR BOUNDED

FUNCTIONS” [BULL. KOREAN MATH. SOC. 53 (2016), NO.

1, 215–225]

Yi-Ling Cang and Jin-Lin Liu

Abstract. In this note we point out some mistakes in a recent paper
by M. Nunokawa et al. [Bull. Korean Math. Soc. 53 (2016), no. 1,
215–225].

Let H denote the class of functions analytic in the unit disk D = {z ∈ C :
|z| < 1}. Very recently, M. Nunokawa, S. Owa and J. Sokól published a paper
[2] titled “A criterion for bounded functions” in Bull. Korean Math. Soc. 53

(2016), no. 1, pp. 215–225. In this paper, they prove the following theorem [2,
Theorem 2.5].

Theorem A. Let h(z) = {(1+z)/(1−z)}α, α ∈ (0, 1], and p(z) be analytic in

D with h(0) = p(0) = 1. Assume also that φ(p(z)) is analytic in D, moreover

Re {φ(h(z))} ≥ 0 in D. If

p(z) + zp′(z)φ(p(z)) ≺ h(z) (z ∈ D),

then p(z) ≺ h(z) (z ∈ D).

In [2] Nunokawa et al. claimed that the above theorem is a new extension of
a result by Hallenback and Ruscheweyh [1] because the function

(1) h(z) =

(
1 + z

1− z

)α

(h(0) = 1, α ∈ (0, 1])

is not convex (see [2, p. 222, line 7]). However, such statement is incorrect.
In this note we shall prove that the function h(z) given by (1) is convex in

D. Further, we shall also show that the function

(2) g(z) =

(
1 + z

1− z

)α

+
2αz

1− z2
(g(0) = 1, α ∈ (0, 1])

considered in [2] is close-to-convex in D.
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Proposition 1. Let 0 < α ≤ 1. Then the function h(z) given by (1) is analytic
and univalently convex in D and

h(D) =
{
w : w ∈ C and −

απ

2
< argw <

απ

2

}
.

Proof. It is easy to see that the transformation

(3) t = w
1

α

maps the convex region

G =
{
w : w ∈ C and −

απ

2
< argw <

απ

2

}

conformally onto the right-half t-plane −π
2 < arg t < π

2 so that w = 1 corre-
sponding to t = 1. Since

(4) z =
t− 1

t+ 1

maps the right-half t-plane Re(t) > 0 onto D, from (1), (3) and (4) we find
that

w = tα =

(
1 + z

1− z

)α

= h(z)

maps D conformally onto G = h(D) with h(0) = 1. This completes the proof.
�

Proposition 2. Let 0 < α ≤ 1. Then the function g(z) defined by (2) is

close-to-convex in D.

Proof. Suppose that

g(z) =

(
1 + z

1− z

)α

+
2αz

1− z2
:= h(z) +Q(z).

Then the function h(z) is convex in D and satisfies

|arg {h(z)}| <
απ

2
(0 < α ≤ 1).

The function Q(z) is starlike in D. Thus

Re

{
zg′(z)

Q(z)

}
= Re

{
h(z) +

zQ′(z)

Q(z)

}
> 0,

which shows that the function g(z) is close-to-convex in D. Now the proof is
complete. �
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