Bull. Korean Math. Soc. **53** (2016), No. 6, pp. 1909–1911 http://dx.doi.org/10.4134/BKMS.b160197 pISSN: 1015-8634 / eISSN: 2234-3016

NOTES ON THE PAPER "A CRITERION FOR BOUNDED FUNCTIONS" [BULL. KOREAN MATH. SOC. 53 (2016), NO. 1, 215-225]

YI-LING CANG AND JIN-LIN LIU

ABSTRACT. In this note we point out some mistakes in a recent paper by M. Nunokawa et al. [Bull. Korean Math. Soc. 53 (2016), no. 1, 215–225].

Let H denote the class of functions analytic in the unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$. Very recently, M. Nunokawa, S. Owa and J. Sokól published a paper [2] titled "A criterion for bounded functions" in Bull. Korean Math. Soc. **53** (2016), no. 1, pp. 215–225. In this paper, they prove the following theorem [2, Theorem 2.5].

Theorem A. Let $h(z) = \{(1+z)/(1-z)\}^{\alpha}$, $\alpha \in (0,1]$, and p(z) be analytic in D with h(0) = p(0) = 1. Assume also that $\phi(p(z))$ is analytic in D, moreover $Re\{\phi(h(z))\} \ge 0$ in D. If

$$p(z) + zp'(z)\phi(p(z)) \prec h(z) \quad (z \in D),$$

then $p(z) \prec h(z) \ (z \in D)$.

In [2] Nunokawa et al. claimed that the above theorem is a new extension of a result by Hallenback and Ruscheweyh [1] because the function

(1)
$$h(z) = \left(\frac{1+z}{1-z}\right)^{\alpha} \quad (h(0) = 1, \alpha \in (0,1])$$

is not convex (see [2, p. 222, line 7]). However, such statement is incorrect.

In this note we shall prove that the function h(z) given by (1) is convex in D. Further, we shall also show that the function

(2)
$$g(z) = \left(\frac{1+z}{1-z}\right)^{\alpha} + \frac{2\alpha z}{1-z^2} \quad (g(0) = 1, \alpha \in (0,1])$$

considered in [2] is close-to-convex in D.

O2016Korean Mathematical Society

1909

Received March 7, 2016.

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. analytic, convex, starlike, close-to-convex.

Proposition 1. Let $0 < \alpha \leq 1$. Then the function h(z) given by (1) is analytic and univalently convex in D and

$$h(D) = \left\{ w : w \in \mathbb{C} \quad and \quad -\frac{\alpha \pi}{2} < \arg w < \frac{\alpha \pi}{2} \right\}.$$

Proof. It is easy to see that the transformation

(3) $t = w^{\frac{1}{\alpha}}$

maps the convex region

$$G = \left\{ w : w \in \mathbb{C} \text{ and } -\frac{\alpha \pi}{2} < \arg w < \frac{\alpha \pi}{2} \right\}$$

conformally onto the right-half t-plane $-\frac{\pi}{2} < \arg t < \frac{\pi}{2}$ so that w = 1 corresponding to t = 1. Since

maps the right-half t-plane $\operatorname{Re}(t) > 0$ onto D, from (1), (3) and (4) we find that

$$w = t^{\alpha} = \left(\frac{1+z}{1-z}\right)^{\alpha} = h(z)$$

maps D conformally onto G = h(D) with h(0) = 1. This completes the proof.

Proposition 2. Let $0 < \alpha \leq 1$. Then the function g(z) defined by (2) is close-to-convex in D.

Proof. Suppose that

$$g(z) = \left(\frac{1+z}{1-z}\right)^{\alpha} + \frac{2\alpha z}{1-z^2} := h(z) + Q(z).$$

Then the function h(z) is convex in D and satisfies

$$\left|\arg\left\{h(z)\right\}\right| < \frac{\alpha\pi}{2} \quad (0 < \alpha \le 1).$$

The function Q(z) is starlike in D. Thus

$$\operatorname{Re}\left\{\frac{zg'(z)}{Q(z)}\right\} = \operatorname{Re}\left\{h(z) + \frac{zQ'(z)}{Q(z)}\right\} > 0,$$

which shows that the function g(z) is close-to-convex in D. Now the proof is complete. \Box

Acknowledgement. This work is supported by the National Natural Science Foundation of China (No. 11571299) and the Natural Science Foundation of Jiangsu Province (No. BK20151304).

1910

References

- D. J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc.52 (1975), 191–195.
- [2] M. Nunokawa, S. Owa, and J. Sokól, A criterion for bounded functions, Bull. Korean Math. Soc. 53 (2016), no. 1, 215–225.

YI-LING CANG DEPARTMENT OF MATHEMATICS SUQIAN COLLEGE SUQIAN 223800, P. R. CHINA *E-mail address*: cangyiling88@126.com

JIN-LIN LIU DEPARTMENT OF MATHEMATICS YANGZHOU UNIVERSITY YANGZHOU 225002, P. R. CHINA *E-mail address*: jlliu@yzu.edu.cn