NOTES ON THE PAPER "A CRITERION FOR BOUNDED FUNCTIONS" [BULL. KOREAN MATH. SOC. 53 (2016), NO.
 1, 215-225]

Yi-Ling Cang and Jin-Lin Liu

Abstract

In this note we point out some mistakes in a recent paper by M. Nunokawa et al. [Bull. Korean Math. Soc. 53 (2016), no. 1, 215-225].

Let H denote the class of functions analytic in the unit disk $D=\{z \in \mathbb{C}$: $|z|<1\}$. Very recently, M. Nunokawa, S. Owa and J. Sokól published a paper [2] titled "A criterion for bounded functions" in Bull. Korean Math. Soc. 53 (2016), no. 1, pp. 215-225. In this paper, they prove the following theorem [2, Theorem 2.5].

Theorem A. Let $h(z)=\{(1+z) /(1-z)\}^{\alpha}, \alpha \in(0,1]$, and $p(z)$ be analytic in D with $h(0)=p(0)=1$. Assume also that $\phi(p(z))$ is analytic in D, moreover $\operatorname{Re}\{\phi(h(z))\} \geq 0$ in D. If

$$
p(z)+z p^{\prime}(z) \phi(p(z)) \prec h(z) \quad(z \in D)
$$

then $p(z) \prec h(z)(z \in D)$.
In [2] Nunokawa et al. claimed that the above theorem is a new extension of a result by Hallenback and Ruscheweyh [1] because the function

$$
\begin{equation*}
h(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(h(0)=1, \alpha \in(0,1]) \tag{1}
\end{equation*}
$$

is not convex (see [2, p. 222, line 7]). However, such statement is incorrect.
In this note we shall prove that the function $h(z)$ given by (1) is convex in D. Further, we shall also show that the function

$$
\begin{equation*}
g(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}+\frac{2 \alpha z}{1-z^{2}} \quad(g(0)=1, \alpha \in(0,1]) \tag{2}
\end{equation*}
$$

considered in [2] is close-to-convex in D.

Received March 7, 2016.
2010 Mathematics Subject Classification. 30C45.
Key words and phrases. analytic, convex, starlike, close-to-convex.

Proposition 1. Let $0<\alpha \leq 1$. Then the function $h(z)$ given by (1) is analytic and univalently convex in D and

$$
h(D)=\left\{w: w \in \mathbb{C} \quad \text { and } \quad-\frac{\alpha \pi}{2}<\arg w<\frac{\alpha \pi}{2}\right\} .
$$

Proof. It is easy to see that the transformation

$$
\begin{equation*}
t=w^{\frac{1}{\alpha}} \tag{3}
\end{equation*}
$$

maps the convex region

$$
G=\left\{w: w \in \mathbb{C} \text { and }-\frac{\alpha \pi}{2}<\arg w<\frac{\alpha \pi}{2}\right\}
$$

conformally onto the right-half t-plane $-\frac{\pi}{2}<\arg t<\frac{\pi}{2}$ so that $w=1$ corresponding to $t=1$. Since

$$
\begin{equation*}
z=\frac{t-1}{t+1} \tag{4}
\end{equation*}
$$

maps the right-half t-plane $\operatorname{Re}(t)>0$ onto D, from (1), (3) and (4) we find that

$$
w=t^{\alpha}=\left(\frac{1+z}{1-z}\right)^{\alpha}=h(z)
$$

maps D conformally onto $G=h(D)$ with $h(0)=1$. This completes the proof.

Proposition 2. Let $0<\alpha \leq 1$. Then the function $g(z)$ defined by (2) is close-to-convex in D.

Proof. Suppose that

$$
g(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}+\frac{2 \alpha z}{1-z^{2}}:=h(z)+Q(z)
$$

Then the function $h(z)$ is convex in D and satisfies

$$
|\arg \{h(z)\}|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1)
$$

The function $Q(z)$ is starlike in D. Thus

$$
\operatorname{Re}\left\{\frac{z g^{\prime}(z)}{Q(z)}\right\}=\operatorname{Re}\left\{h(z)+\frac{z Q^{\prime}(z)}{Q(z)}\right\}>0
$$

which shows that the function $g(z)$ is close-to-convex in D. Now the proof is complete.

Acknowledgement. This work is supported by the National Natural Science Foundation of China (No. 11571299) and the Natural Science Foundation of Jiangsu Province (No. BK20151304).

References

[1] D. J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195.
[2] M. Nunokawa, S. Owa, and J. Sokól, A criterion for bounded functions, Bull. Korean Math. Soc. 53 (2016), no. 1, 215-225.

Yi-Ling Cang
Department of Mathematics
Suqian College
Suqian 223800, P. R. China
E-mail address: cangyiling88@126.com
Jin-Lin Liu
Department of Mathematics
Yangzhou University
Yangzhou 225002, P. R. China
E-mail address: jlliu@yzu.edu.cn

