THETA SUMS OF HIGHER INDEX

Jae-Hyun Yang

Abstract. In this paper, we obtain some behaviours of theta sums of higher index for the Schrödinger-Weil representation of the Jacobi group associated with a positive definite symmetric real matrix of degree m.

1. Introduction

For a given fixed positive integer n, we let

$$
\mathbb{H}_{n}=\left\{\Omega \in \mathbb{C}^{(n, n)} \mid \Omega={ }^{t} \Omega, \quad \operatorname{Im} \Omega>0\right\}
$$

be the Siegel upper half plane of degree n and let

$$
S p(n, \mathbb{R})=\left\{g \in \mathbb{R}^{(2 n, 2 n)} \mid{ }^{t} g J_{n} g=J_{n}\right\}
$$

be the symplectic group of degree n, where $F^{(k, l)}$ denotes the set of all $k \times l$ matrices with entries in a commutative ring F for two positive integers k and $l,{ }^{t} M$ denotes the transpose of a matrix $M, \operatorname{Im} \Omega$ denotes the imaginary part of Ω and

$$
J_{n}=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

Here I_{n} denotes the identity matrix of degree n. We see that $S p(n, \mathbb{R})$ acts on \mathbb{H}_{n} transitively by

$$
g \cdot \Omega=(A \Omega+B)(C \Omega+D)^{-1}
$$

where $g=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in S p(n, \mathbb{R})$ and $\Omega \in \mathbb{H}_{n}$.
For two positive integers n and m, we consider the Heisenberg group

$$
H_{\mathbb{R}}^{(n, m)}=\left\{(\lambda, \mu ; \kappa) \mid \lambda, \mu \in \mathbb{R}^{(m, n)}, \kappa \in \mathbb{R}^{(m, m)}, \kappa+\mu^{t} \lambda \text { symmetric }\right\}
$$

endowed with the following multiplication law

$$
(\lambda, \mu ; \kappa) \circ\left(\lambda^{\prime}, \mu^{\prime} ; \kappa^{\prime}\right)=\left(\lambda+\lambda^{\prime}, \mu+\mu^{\prime} ; \kappa+\kappa^{\prime}+\lambda^{t} \mu^{\prime}-\mu^{t} \lambda^{\prime}\right)
$$

Received January 6, 2016; Revised April 18, 2016.
2010 Mathematics Subject Classification. Primary 11F27, 11F50.
Key words and phrases. the Schrödinger-Weil representation, theta sums.
The author was supported by Basic Science Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (49562-1) and also by INHA UNIVERSITY Research Grant.

We let

$$
G^{J}=S p(n, \mathbb{R}) \ltimes H_{\mathbb{R}}^{(n, m)} \quad(\text { semi-direct product })
$$

be the Jacobi group endowed with the following multiplication law

$$
(g,(\lambda, \mu ; \kappa)) \cdot\left(g^{\prime},\left(\lambda^{\prime}, \mu^{\prime} ; \kappa^{\prime}\right)\right)=\left(g g^{\prime},\left(\widetilde{\lambda}+\lambda^{\prime}, \widetilde{\mu}+\mu^{\prime} ; \kappa+\kappa^{\prime}+\widetilde{\lambda}^{t} \mu^{\prime}-\widetilde{\mu}^{t} \lambda^{\prime}\right)\right)
$$

with $g, g^{\prime} \in \operatorname{Sp}(n, \mathbb{R}),(\lambda, \mu ; \kappa),\left(\lambda^{\prime}, \mu^{\prime} ; \kappa^{\prime}\right) \in H_{\mathbb{R}}^{(n, m)}$ and $(\widetilde{\lambda}, \widetilde{\mu})=(\lambda, \mu) g^{\prime}$. Then we have the natural transitive action of G^{J} on the Siegel-Jacobi space $\mathbb{H}_{n, m}:=$ $\mathbb{H}_{n} \times \mathbb{C}^{(m, n)}$ defined by

$$
(g,(\lambda, \mu ; \kappa)) \cdot(\Omega, Z)=\left((A \Omega+B)(C \Omega+D)^{-1},(Z+\lambda \Omega+\mu)(C \Omega+D)^{-1}\right)
$$

where $g=\left(\begin{array}{cc}A & B \\ C\end{array}\right) \in S p(n, \mathbb{R}),(\lambda, \mu ; \kappa) \in H_{\mathbb{R}}^{(n, m)}$ and $(\Omega, Z) \in \mathbb{H}_{n, m}$. Thus $\mathbb{H}_{n, m}$ is a homogeneous Kähler space which is not symmetric. In fact, $\mathbb{H}_{n, m}$ is biholomorphic to the homogeneous space G^{J} / K^{J}, where $K^{J} \cong U(n) \times S(m, \mathbb{R})$. Here $U(n)$ denotes the unitary group of degree n and $S(m, \mathbb{R})$ denote the abelian additive group consisting of all $m \times m$ symmetric real matrices. We refer to $[1,2,4],[12]-[29]$ for more details on materials related to the Siegel-Jacobi space, e.g., Jacobi forms, invariant metrics, invariant differential operators and Maass-Jacobi forms.

The Weil representation for a symplectic group was first introduced by A. Weil in [10] to reformulate Siegel's analytic theory of quadratic forms (cf. [9]) in terms of the group theoretical theory. It is well known that the Weil representation plays a central role in the study of the transformation behaviors of theta series. In [27], Yang constructed the Schrödinger-Weil representation $\omega_{\mathcal{M}}$ of the Jacobi group G^{J} associated with a positive definite symmetric real matrix \mathcal{M} of degree n explicitly.

This paper is organized as follows. In Section 2, we review the SchrödingerWeil representation $\omega_{\mathcal{M}}$ of the Jacobi group G^{J} associated with a symmetric positive definite matrix \mathcal{M} and recall the basic actions of $\omega_{\mathcal{M}}$ on the representation space $L^{2}\left(\mathbb{R}^{(m, n)}\right)$ which were expressed explicitly in [27]. In Section 3, we define the theta sum $\Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu, \kappa)$ of higher index and obtain some properties of the theta sum. The theta sum $\Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu, \kappa)$ is a generalization of the theta sum defined by J. Marklof [6].
Notations: We denote by \mathbb{Z}, \mathbb{R} and \mathbb{C} the ring of integers, the field of real numbers and the field of complex numbers respectively. \mathbb{C}^{\times}denotes the multiplicative group of nonzero complex numbers and \mathbb{Z}^{\times}denotes the set of all nonzero integers. T denotes the multiplicative group of complex numbers of modulus one. The symbol " $:=$ " means that the expression on the right is the definition of that on the left. For a square matrix $A \in F^{(k, k)}$ of degree $k, \sigma(A)$ denotes the trace of A. We put $i=\sqrt{-1}$.

2. The Schrödinger-Weil representation

In this section we review the Schrödinger-Weil representation of the Jacobi group G^{J} (cf. [27], Section 3).

Throughout this section we assume that \mathcal{M} is a positive definite symmetric real $m \times m$ matrix. We let

$$
L=\left\{(0, \mu ; \kappa) \in H_{\mathbb{R}}^{(n, m)} \mid \mu \in \mathbb{R}^{(m, n)}, \kappa={ }^{t} \kappa \in \mathbb{R}^{(m, m)}\right\}
$$

be a commutative normal subgroup of $H_{\mathbb{R}}^{(n, m)}$ and $\chi_{\mathcal{M}}: L \longrightarrow \mathbb{C}^{\times}$be the unitary character of L defined by

$$
\chi_{\mathcal{M}}((0, \mu ; \kappa)):=e^{\pi i \sigma(\mathcal{M} \kappa)}, \quad(0, \mu ; \kappa) \in L .
$$

The representation $\mathscr{W}_{\mathcal{M}}=\operatorname{Ind}_{L}^{H_{\mathbb{R}}^{(n, m)}} \chi_{\mathcal{M}}$ induced by $\chi_{\mathcal{M}}$ from L is realized on the Hilbert space $H\left(\chi_{\mathcal{M}}\right) \cong L^{2}\left(\mathbb{R}^{(m, n)}, d \xi\right)$. $\mathscr{W}_{\mathcal{M}}$ is irreducible (cf. [11], Theorem 3) and is called the Schrödinger representation $\mathscr{W}_{\mathcal{M}}$ of the Heisenberg group $H_{\mathbb{R}}^{(n, m)}$ with the central character $\chi_{\mathcal{M}}$. We refer to $[11,14,17,18,19$, 24] for more representations of the Heisenberg group $H_{\mathbb{R}}^{(n, m)}$ and their related topics. Then $\mathscr{W}_{\mathcal{M}}$ is expressed explicitly as

$$
\begin{equation*}
\left[\mathscr{W}_{\mathcal{M}}\left(h_{0}\right) f\right](\lambda)=e^{\pi i \sigma\left\{\mathcal{M}\left(\kappa_{0}+\mu_{0}{ }^{t} \lambda_{0}+2 \lambda^{t} \mu_{0}\right)\right\}} f\left(\lambda+\lambda_{0}\right) \tag{2.1}
\end{equation*}
$$

where $h_{0}=\left(\lambda_{0}, \mu_{0} ; \kappa_{0}\right) \in H$ and $\lambda \in \mathbb{R}^{(m, n)}$. See Formula (2.4) in [27] for more detail on $\mathscr{W}_{\mathcal{M}}$. We note that the symplectic group $S p(n, \mathbb{R})$ acts on $H_{\mathbb{R}}^{(n, m)}$ by conjugation inside G^{J}. For a fixed element $g \in S p(n, \mathbb{R})$, the irreducible unitary representation $\mathscr{W}_{\mathcal{M}}^{g}$ of $H_{\mathbb{R}}^{(n, m)}$ defined by

$$
\begin{equation*}
\mathscr{W}_{\mathcal{M}}^{g}(h)=\mathscr{W}_{\mathcal{M}}\left(g h g^{-1}\right), \quad h \in H_{\mathbb{R}}^{(n, m)} \tag{2.2}
\end{equation*}
$$

has the property that

$$
\mathscr{W}_{\mathcal{M}}^{g}((0,0 ; \kappa))=\mathscr{W}_{\mathcal{M}}((0,0 ; \kappa))=e^{\pi i \sigma(\mathcal{M} \kappa)} \operatorname{Id}_{H(\chi \mathcal{M})}, \quad \kappa \in S(m, \mathbb{R})
$$

Here $\mathrm{Id}_{H\left(\chi_{\mathcal{M}}\right)}$ denotes the identity operator on the Hilbert space $H\left(\chi_{\mathcal{M}}\right)$. According to Stone-von Neumann theorem, there exists a unitary operator $R_{\mathcal{M}}(g)$ on $H\left(\chi_{\mathcal{M}}\right)$ with $R_{\mathcal{M}}\left(I_{2 n}\right)=\operatorname{Id}_{H\left(\chi_{\mathcal{M}}\right)}$ such that

$$
\begin{equation*}
R_{\mathcal{M}}(g) \mathscr{W}_{\mathcal{M}}(h)=\mathscr{W}_{\mathcal{M}}^{g}(h) R_{\mathcal{M}}(g) \quad \text { for all } h \in H_{\mathbb{R}}^{(n, m)} \tag{2.3}
\end{equation*}
$$

We observe that $R_{\mathcal{M}}(g)$ is determined uniquely up to a scalar of modulus one.
From now on, for brevity, we put $G=S p(n, \mathbb{R})$. According to Schur's lemma, we have a $\operatorname{map} c_{\mathcal{M}}: G \times G \longrightarrow T$ satisfying the relation

$$
\begin{equation*}
R_{\mathcal{M}}\left(g_{1} g_{2}\right)=c_{\mathcal{M}}\left(g_{1}, g_{2}\right) R_{\mathcal{M}}\left(g_{1}\right) R_{\mathcal{M}}\left(g_{2}\right) \text { for all } g_{1}, g_{2} \in G \tag{2.4}
\end{equation*}
$$

We recall that T denotes the multiplicative group of complex numbers of modulus one. Therefore $R_{\mathcal{M}}$ is a projective representation of G on $H\left(\chi_{\mathcal{M}}\right)$ and $c_{\mathcal{M}}$ defines the cocycle class in $H^{2}(G, T)$. The cocycle $c_{\mathcal{M}}$ yields the central
extension $G_{\mathcal{M}}$ of G by T. The group $G_{\mathcal{M}}$ is a set $G \times T$ equipped with the following multiplication

$$
\begin{equation*}
\left(g_{1}, t_{1}\right) \cdot\left(g_{2}, t_{2}\right)=\left(g_{1} g_{2}, t_{1} t_{2} c_{\mathcal{M}}\left(g_{1}, g_{2}\right)^{-1}\right), \quad g_{1}, g_{2} \in G, t_{1}, t_{2} \in T \tag{2.5}
\end{equation*}
$$

We see immediately that the $\operatorname{map} \widetilde{R}_{\mathcal{M}}: G_{\mathcal{M}} \longrightarrow G L\left(H\left(\chi_{\mathcal{M}}\right)\right)$ defined by

$$
\begin{equation*}
\widetilde{R}_{\mathcal{M}}(g, t)=t R_{\mathcal{M}}(g) \quad \text { for all }(g, t) \in G_{\mathcal{M}} \tag{2.6}
\end{equation*}
$$

is a true representation of $G_{\mathcal{M}}$. As in Section 1.7 in [5], we can define the map $s_{\mathcal{M}}: G \longrightarrow T$ satisfying the relation

$$
c_{\mathcal{M}}\left(g_{1}, g_{2}\right)^{2}=s_{\mathcal{M}}\left(g_{1}\right)^{-1} s_{\mathcal{M}}\left(g_{2}\right)^{-1} s_{\mathcal{M}}\left(g_{1} g_{2}\right) \quad \text { for all } g_{1}, g_{2} \in G
$$

Thus we see that

$$
\begin{equation*}
G_{2, \mathcal{M}}=\left\{(g, t) \in G_{\mathcal{M}} \mid t^{2}=s_{\mathcal{M}}(g)^{-1}\right\} \tag{2.7}
\end{equation*}
$$

is the metaplectic group associated with \mathcal{M} that is a two-fold covering group of G. The restriction $R_{2, \mathcal{M}}$ of $\widetilde{R}_{\mathcal{M}}$ to $G_{2, \mathcal{M}}$ is the Weil representation of G associated with \mathcal{M}.

If we identify $h=(\lambda, \mu ; \kappa) \in H_{\mathbb{R}}^{(n, m)}($ resp. $g \in S p(n, \mathbb{R}))$ with $\left(I_{2 n},(\lambda, \mu ; \kappa)\right)$ $\in G^{J}\left(\right.$ resp. $\left.(g,(0,0 ; 0)) \in G^{J}\right)$, every element \tilde{g} of G^{J} can be written as $\tilde{g}=h g$ with $h \in H_{\mathbb{R}}^{(n, m)}$ and $g \in S p(n, \mathbb{R})$. In fact,

$$
(g,(\lambda, \mu ; \kappa))=\left(I_{2 n},\left((\lambda, \mu) g^{-1} ; \kappa\right)\right)(g,(0,0 ; 0))=\left((\lambda, \mu) g^{-1} ; \kappa\right) \cdot g
$$

Therefore we define the projective representation $\pi_{\mathcal{M}}$ of the Jacobi group G^{J} with cocycle $c_{\mathcal{M}}\left(g_{1}, g_{2}\right)$ by

$$
\begin{equation*}
\pi_{\mathcal{M}}(h g)=\mathscr{W}_{\mathcal{M}}(h) R_{\mathcal{M}}(g), \quad h \in H_{\mathbb{R}}^{(n, m)}, g \in G . \tag{2.8}
\end{equation*}
$$

We let

$$
G_{\mathcal{M}}^{J}=G_{\mathcal{M}} \ltimes H_{\mathbb{R}}^{(n, m)}
$$

be the semidirect product of $G_{\mathcal{M}}$ and $H_{\mathbb{R}}^{(n, m)}$ with the multiplication law

$$
\begin{aligned}
& \left(\left(g_{1}, t_{1}\right),\left(\lambda_{1}, \mu_{1} ; \kappa_{1}\right)\right) \cdot\left(\left(g_{2}, t_{2}\right),\left(\lambda_{2}, \mu_{2} ; \kappa_{2}\right)\right) \\
= & \left(\left(g_{1}, t_{1}\right)\left(g_{2}, t_{2}\right),\left(\tilde{\lambda}+\lambda_{2}, \tilde{\mu}+\mu_{2} ; \kappa_{1}+\kappa_{2}+\tilde{\lambda}^{t} \mu_{2}-\tilde{\mu}^{t} \lambda_{2}\right)\right),
\end{aligned}
$$

where $\left(g_{1}, t_{1}\right),\left(g_{2}, t_{2}\right) \in G_{\mathcal{M}},\left(\lambda_{1}, \mu_{1} ; \kappa_{1}\right),\left(\lambda_{2}, \mu_{2} ; \kappa_{2}\right) \in H_{\mathbb{R}}^{(n, m)}$ and $(\tilde{\lambda}, \tilde{\mu})=$ $(\lambda, \mu) g_{2}$. If we identify $h=(\lambda, \mu ; \kappa) \in H_{\mathbb{R}}^{(n, m)}$ (resp. $\left.(g, t) \in G_{\mathcal{M}}\right)$ with $\left(\left(I_{2 n}, 1\right),(\lambda, \mu ; \kappa)\right) \in G_{\mathcal{M}}^{J}$ (resp. $\left.((g, t),(0,0 ; 0)) \in G_{\mathcal{M}}^{J}\right)$, we see easily that every element $((g, t),(\lambda, \mu ; \kappa))$ of $G_{\mathcal{M}}^{J}$ can be expressed as
$((g, t),(\lambda, \mu ; \kappa))=\left(\left(I_{2 n}, 1\right),\left((\lambda, \mu) g^{-1} ; \kappa\right)\right)((g, t),(0,0 ; 0))=\left((\lambda, \mu) g^{-1} ; \kappa\right)(g, t)$.
Now we can define the true representation $\widetilde{\omega}_{\mathcal{M}}$ of $G_{\mathcal{M}}^{J}$ by
(2.9) $\widetilde{\omega}_{\mathcal{M}}(h \cdot(g, t))=t \pi_{\mathcal{M}}(h g)=t \mathscr{W}_{\mathcal{M}}(h) R_{\mathcal{M}}(g), \quad h \in H_{\mathbb{R}}^{(n, m)},(g, t) \in G_{\mathcal{M}}$.

We recall that the following matrices

$$
\begin{aligned}
t(b) & =\left(\begin{array}{cc}
I_{n} & b \\
0 & I_{n}
\end{array}\right) \text { with any } b={ }^{t} b \in \mathbb{R}^{(n, n)} \\
g(\alpha) & =\left(\begin{array}{cc}
t_{\alpha} & 0 \\
0 & \alpha^{-1}
\end{array}\right) \text { with any } \alpha \in G L(n, \mathbb{R}) \\
\sigma_{n} & =\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)
\end{aligned}
$$

generate the symplectic group $G=S p(n, \mathbb{R})(c f .[3$, p. 326], [7, p. 210] $)$. Therefore the following elements $h_{t}(\lambda, \mu ; \kappa), t(b ; t), g(\alpha ; t)$ and $\sigma_{n ; t}$ of $G_{\mathcal{M}} \ltimes H_{\mathbb{R}}^{(n, m)}$ defined by

$$
\begin{aligned}
& h_{t}(\lambda, \mu ; \kappa)=\left(\left(I_{2 n}, t\right),(\lambda, \mu ; \kappa)\right) \text { with } t \in T, \lambda, \mu \in \mathbb{R}^{(m, n)} \text { and } \kappa \in \mathbb{R}^{(m, m)}, \\
& t(b ; t)=((t(b), t),(0,0 ; 0)) \text { with any } b=^{t} b \in \mathbb{R}^{(n, n)}, t \in T \\
& g(\alpha ; t)=((g(\alpha), t),(0,0 ; 0)) \text { with any } \alpha \in G L(n, \mathbb{R}) \text { and } t \in T \\
& \sigma_{n ; t}=\left(\left(\sigma_{n}, t\right),(0,0 ; 0)\right) \text { with } t \in T
\end{aligned}
$$

generate the group $G_{\mathcal{M}} \ltimes H_{\mathbb{R}}^{(n, m)}$. We can show that the representation $\widetilde{\omega}_{\mathcal{M}}$ is realized on the representation $H\left(\chi_{\mathcal{M}}\right)=L^{2}\left(\mathbb{R}^{(m, n)}\right)$ as follows: for each $f \in L^{2}\left(\mathbb{R}^{(m, n)}\right)$ and $x \in \mathbb{R}^{(m, n)}$, the actions of $\widetilde{\omega}_{\mathcal{M}}$ on the generators are given by

$$
\begin{align*}
{\left[\widetilde{\omega}_{\mathcal{M}}\left(h_{t}(\lambda, \mu ; \kappa)\right) f\right](x) } & =t e^{\pi i \sigma\left\{\mathcal{M}\left(\kappa+\mu^{t} \lambda+2 x^{t} \mu\right)\right\}} f(x+\lambda) \tag{2.10}\\
{\left[\widetilde{\omega}_{\mathcal{M}}(t(b ; t)) f\right](x) } & =t e^{\pi i \sigma\left(\mathcal{M} x b^{t} x\right)} f(x), \tag{2.11}\\
{\left[\widetilde{\omega}_{\mathcal{M}}(g(\alpha ; t)) f\right](x) } & =t|\operatorname{det} \alpha|^{\frac{m}{2}} f\left(x^{t} \alpha\right), \tag{2.12}\\
{\left[\widetilde{\omega}_{\mathcal{M}}\left(\sigma_{n ; t}\right) f\right](x) } & =t(\operatorname{det} \mathcal{M})^{\frac{n}{2}} \int_{\mathbb{R}^{(m, n)}} f(y) e^{-2 \pi i \sigma\left(\mathcal{M} y^{t} x\right)} d y \tag{2.13}
\end{align*}
$$

Let

$$
G_{2, \mathcal{M}}^{J}=G_{2, \mathcal{M}} \ltimes H_{\mathbb{R}}^{(n, m)}
$$

be the semidirect product of $G_{2, \mathcal{M}}$ and $H_{\mathbb{R}}^{(n, m)}$. Then $G_{2, \mathcal{M}}^{J}$ is a subgroup of $G_{\mathcal{M}}^{J}$ which is a two-fold covering group of the Jacobi group G^{J}. The restriction $\omega_{\mathcal{M}}$ of $\widetilde{\omega}_{\mathcal{M}}$ to $G_{2, \mathcal{M}}^{J}$ is called the Schrödinger-Weil representation of G^{J} associated with \mathcal{M}.

Remark 2.1. In the case $n=m=1, \omega_{\mathcal{M}}$ is dealt in [1] and [6].
Remark 2.2. The Schrödinger-Weil representation is applied usefully to the theory of Maass-Jacobi forms [8].

3. Theta sums of higher index

Let \mathcal{M} be a positive definite symmetric real matrix of degree m. We recall the Schrödinger representation $\mathscr{W}_{\mathcal{M}}$ of the Heisenberg group $H_{\mathbb{R}}^{(n, m)}$ associate with \mathcal{M} given by Formula (2.1) in Section 2. We note that for an element $(\lambda, \mu ; \kappa)$ of $H_{\mathbb{R}}^{(n, m)}$, we have the decomposition

$$
(\lambda, \mu ; \kappa)=(\lambda, 0 ; 0) \circ(0, \mu ; 0) \circ\left(0,0 ; \kappa-\lambda^{t} \mu\right) .
$$

We consider the embedding $\Phi_{n}: S L(2, \mathbb{R}) \longrightarrow S p(n, \mathbb{R})$ defined by

$$
\Phi_{n}\left(\left(\begin{array}{ll}
a & b \tag{3.1}\\
c & d
\end{array}\right)\right):=\left(\begin{array}{ll}
a I_{n} & b I_{n} \\
c I_{n} & d I_{n}
\end{array}\right), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{R}) .
$$

For $x, y \in \mathbb{R}^{(m, n)}$, we put

$$
(x, y)_{\mathcal{M}}:=\sigma\left({ }^{t} x \mathcal{M} y\right) \quad \text { and } \quad\|x\|_{\mathcal{M}}:=\sqrt{(x, x)_{\mathcal{M}}}
$$

According to Formulas (2.11)-(2.13), for any $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{R}) \hookrightarrow S p(n, \mathbb{R})$ and $f \in L^{2}\left(\mathbb{R}^{(m, n)}\right)$, we have the following explicit representation

$$
\left[R_{\mathcal{M}}(M) f\right](x)= \begin{cases}|a|^{\frac{m n}{2}} e^{a b\|x\|_{\mathcal{M}}{ }^{\pi i} f(a x)} & \text { if } c=0 \tag{3.2}\\ (\operatorname{det} \mathcal{M})^{\frac{n}{2}}|c|^{-\frac{m n}{2}} \int_{\mathbb{R}^{(m, n)}} e^{\frac{\alpha(M, x, y, \mathcal{M})}{c} \pi i} f(y) d y & \text { if } c \neq 0\end{cases}
$$

where

$$
\alpha(M, x, y, \mathcal{M})=a\|x\|_{\mathcal{M}}^{2}+d\|y\|_{\mathcal{M}}^{2}-2(x, y)_{\mathcal{M}}
$$

Indeed, if $a=0$ and $c \neq 0$, using the decomposition

$$
M=\left(\begin{array}{cc}
0 & -c^{-1} \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
c & d \\
0 & c^{-1}
\end{array}\right)
$$

and if $a \neq 0$ and $c \neq 0$, using the decomposition

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & c^{-1} \\
0 & a^{-1}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a c & a d \\
0 & (a c)^{-1}
\end{array}\right)
$$

we obtain Formula (3.2).
If

$$
M_{1}=\left(\begin{array}{cc}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right), \quad M_{2}=\left(\begin{array}{cc}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right) \quad \text { and } \quad M_{3}=\left(\begin{array}{ll}
a_{3} & b_{3} \\
c_{3} & d_{3}
\end{array}\right) \in S L(2, \mathbb{R})
$$

with $M_{3}=M_{1} M_{2}$, the corresponding cocycle is given by

$$
\begin{equation*}
c_{\mathcal{M}}\left(M_{1}, M_{2}\right)=e^{-i \pi m n \operatorname{sign}\left(c_{1} c_{2} c_{3}\right) / 4} \tag{3.3}
\end{equation*}
$$

where

$$
\operatorname{sign}(x)=\left\{\begin{aligned}
-1 & (x<0) \\
0 & (x=0) \\
1 & (x>0) .
\end{aligned}\right.
$$

In the special case when

$$
M_{1}=\left(\begin{array}{rr}
\cos \phi_{1} & -\sin \phi_{1} \\
\sin \phi_{1} & \cos \phi_{1}
\end{array}\right) \quad \text { and } \quad M_{2}=\left(\begin{array}{rr}
\cos \phi_{2} & -\sin \phi_{2} \\
\sin \phi_{2} & \cos \phi_{2}
\end{array}\right)
$$

we find

$$
c_{\mathcal{M}}\left(M_{1}, M_{2}\right)=e^{-i \pi m n\left(\sigma_{\phi_{1}}+\sigma_{\phi_{2}}-\sigma_{\phi_{1}+\phi_{2}}\right) / 4}
$$

where

$$
\sigma_{\phi}= \begin{cases}2 \nu & \text { if } \phi=\nu \pi \\ 2 \nu+1 & \text { if } \nu \pi<\phi<(\nu+1) \pi\end{cases}
$$

It is well known that every $M \in S L(2, \mathbb{R})$ admits the unique Iwasawa decomposition

$$
M=\left(\begin{array}{ll}
1 & u \tag{3.4}\\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
v^{1 / 2} & 0 \\
0 & v^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right),
$$

where $\tau=u+i v \in \mathbb{H}_{1}$ and $\phi \in[0,2 \pi)$. This parametrization $M=(\tau, \phi)$ in $S L(2, \mathbb{R})$ leads to the natural action of $S L(2, \mathbb{R})$ on $\mathbb{H}_{1} \times[0,2 \pi)$ defined by

$$
\left(\begin{array}{ll}
a & b \tag{3.5}\\
c & d
\end{array}\right)(\tau, \phi):=\left(\frac{a \tau+b}{c \tau+d}, \phi+\arg (c \tau+d) \bmod 2 \pi\right) .
$$

Lemma 3.1. For two elements g_{1} and g_{2} in $S L(2, \mathbb{R})$, we let

$$
g_{1}=\left(\begin{array}{cc}
1 & u_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
v_{1}^{1 / 2} & 0 \\
0 & v_{1}^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \phi_{1} & -\sin \phi_{1} \\
\sin \phi_{1} & \cos \phi_{1}
\end{array}\right)
$$

and

$$
g_{2}=\left(\begin{array}{cc}
1 & u_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
v_{2}^{1 / 2} & 0 \\
0 & v_{2}^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \phi_{2} & -\sin \phi_{2} \\
\sin \phi_{2} & \cos \phi_{2}
\end{array}\right)
$$

be the Iwasawa decompositions of g_{1} and g_{2} respectively, where $u_{1}, u_{2} \in \mathbb{R}, v_{1}>$ $0, v_{2}>0$ and $0 \leq \phi_{1}, \phi_{2}<2 \pi$. Let

$$
g_{3}=g_{1} g_{2}=\left(\begin{array}{cc}
1 & u_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
v_{3}^{1 / 2} & 0 \\
0 & v_{3}^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \phi_{3} & -\sin \phi_{3} \\
\sin \phi_{3} & \cos \phi_{3}
\end{array}\right)
$$

be the Iwasawa decomposition of $g_{3}=g_{1} g_{2}$. Then we have

$$
\begin{aligned}
u_{3} & =\frac{A}{\left(u_{2} \sin \phi_{1}+\cos \phi_{1}\right)^{2}+\left(v_{2} \sin \phi_{1}\right)^{2}}, \\
v_{3} & =\frac{v_{1} v_{2}}{\left(u_{2} \sin \phi_{1}+\cos \phi_{1}\right)^{2}+\left(v_{2} \sin \phi_{1}\right)^{2}}
\end{aligned}
$$

and

$$
\phi_{3}=\tan ^{-1}\left[\frac{\left(v_{2} \cos \phi_{2}+u_{2} \sin \phi_{2}\right) \tan \phi_{1}+\sin \phi_{2}}{\left(-v_{2} \sin \phi_{2}+u_{2} \cos \phi_{2}\right) \tan \phi_{1}+\cos \phi_{2}}\right],
$$

where

$$
\begin{aligned}
A= & u_{1}\left(u_{2} \sin \phi_{1}+\cos \phi_{1}\right)^{2}+\left(u_{1} v_{2}-v_{1} u_{2}\right) \sin ^{2} \phi_{1} \\
& +v_{1} u_{2} \cos ^{2} \phi_{1}+v_{1}\left(u_{2}^{2}+v_{2}^{2}-1\right) \sin \phi_{1} \cos \phi_{1} .
\end{aligned}
$$

Proof. If $g \in S L(2, \mathbb{R})$ has the unique Iwasawa decomposition (3.4), then we get the following

$$
\begin{aligned}
a & =v^{1 / 2} \cos \phi+u v^{-1 / 2} \sin \phi \\
b & =-v^{1 / 2} \sin \phi+u v^{-1 / 2} \cos \phi \\
c & =v^{-1 / 2} \sin \phi, \quad d=v^{-1 / 2} \cos \phi \\
u & =(a c+b d)\left(c^{2}+d^{2}\right)^{-1}, \quad v=\left(c^{2}+d^{2}\right)^{-1}, \quad \tan \phi=\frac{c}{d} .
\end{aligned}
$$

We set

$$
g_{3}=g_{1} g_{2}=\left(\begin{array}{ll}
a_{3} & b_{3} \\
c_{3} & d_{3}
\end{array}\right) .
$$

Since

$$
u_{3}=\left(a_{3} c_{3}+b_{3} d_{3}\right)\left(c_{3}^{2}+d_{3}^{2}\right)^{-1}, \quad v=\left(c_{3}^{2}+d_{3}^{2}\right)^{-1}, \quad \tan \phi_{3}=\frac{c_{3}}{d_{3}},
$$

by an easy computation, we obtain the desired results.
Now we use the new coordinates $(\tau=u+i v, \phi)$ with $\tau \in \mathbb{H}_{1}$ and $\phi \in[0,2 \pi)$ in $S L(2, \mathbb{R})$. According to Formulas (2.11)-(2.13), the projective representation $R_{\mathcal{M}}$ of $S L(2, \mathbb{R}) \hookrightarrow S p(n, \mathbb{R})$ reads in these coordinates $(\tau=u+i v, \phi)$ as follows:

$$
\begin{equation*}
\left[R_{\mathcal{M}}(\tau, \phi) f\right](x)=v^{\frac{m n}{4}} e^{u\|x\|_{\mathcal{M}}^{2 \pi i}\left[R_{\mathcal{M}}(i, \phi) f\right]\left(v^{1 / 2} x\right), ~} \tag{3.6}
\end{equation*}
$$

where $f \in L^{2}\left(\mathbb{R}^{(m, n)}\right), x \in \mathbb{R}^{(m, n)}$ and

$$
\left[R_{\mathcal{M}}(i, \phi) f\right](x)
$$

$$
= \begin{cases}f(x) & \text { if } \phi \equiv 0 \bmod 2 \pi \tag{3.7}\\ f(-x) & \text { if } \phi \equiv \pi \bmod 2 \pi \\ (\operatorname{det} \mathcal{M})^{\frac{n}{2}}|\sin \phi|^{-\frac{m n}{2}} \int_{\mathbb{R}^{(m, n)}} e^{B(x, y, \phi, \mathcal{M}) \pi i} f(y) d y & \text { if } \phi \not \equiv 0 \bmod \pi\end{cases}
$$

Here

$$
B(x, y, \phi, \mathcal{M})=\frac{\left(\|x\|_{\mathcal{M}}^{2}+\|y\|_{\mathcal{M}}^{2}\right) \cos \phi-2(x, y)_{\mathcal{M}}}{\sin \phi}
$$

Now we set

$$
S=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

We note that

$$
\begin{equation*}
\left[R_{\mathcal{M}}\left(i, \frac{\pi}{2}\right) f\right](x)=\left[R_{\mathcal{M}}(S) f\right](x)=(\operatorname{det} \mathcal{M})^{\frac{n}{2}} \int_{\mathbb{R}^{(m, n)}} f(y) e^{-2(x, y)_{\mathcal{M}} \pi i} d y \tag{3.8}
\end{equation*}
$$

for $f \in L^{2}\left(\mathbb{R}^{(m, n)}\right)$.

Remark 3.1. For Schwartz functions $f \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$, we have

$$
\lim _{\phi \longrightarrow 0 \pm}|\sin \phi|^{-\frac{m n}{2}} \int_{\mathbb{R}^{(m, n)}} e^{B(x, y, \phi, \mathcal{M}) \pi i} f(y) d y=e^{ \pm i \pi m n / 4} f(x) \neq f(x) .
$$

Therefore the projective representation $R_{\mathcal{M}}$ is not continuous at $\phi=\nu \pi(\nu \in \mathbb{Z})$ in general. If we set

$$
\tilde{R}_{\mathcal{M}}(\tau, \phi)=e^{-i \pi m n \sigma_{\phi} / 4} R_{\mathcal{M}}(\tau, \phi),
$$

$\tilde{R}_{\mathcal{M}}$ corresponds to a unitary representation of the double cover of $S L(2, \mathbb{R})$ (cf. (2.6) and [5]). This means in particular that

$$
\tilde{R}_{\mathcal{M}}(i, \phi) \tilde{R}_{\mathcal{M}}\left(i, \phi^{\prime}\right)=\tilde{R}_{\mathcal{M}}\left(i, \phi+\phi^{\prime}\right),
$$

where $\phi \in[0,4 \pi)$ parametrises the double cover of $S O(2) \subset S L(2, \mathbb{R})$.
We observe that for any element $(g,(\lambda, \mu ; \kappa)) \in G^{J}$ with $g \in S p(n, \mathbb{R})$ and $(\lambda, \mu ; \kappa) \in H_{\mathbb{R}}^{(n, m)}$, we have the following decomposition

$$
(g,(\lambda, \mu ; \kappa))=\left(I_{2 n},\left((\lambda, \mu) g^{-1} ; \kappa\right)\right)(g,(0,0 ; 0))=\left((\lambda, \mu) g^{-1} ; \kappa\right) \cdot g
$$

Thus $S p(n, \mathbb{R})$ acts on $H_{\mathbb{R}}^{(n, m)}$ naturally by

$$
g \cdot(\lambda, \mu ; \kappa)=\left((\lambda, \mu) g^{-1} ; \kappa\right), \quad g \in S p(n, \mathbb{R}),(\lambda, \mu ; \kappa) \in H_{\mathbb{R}}^{(n, m)}
$$

Definition 3.1. For any Schwartz function $f \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$, we define the function $\Theta_{f}^{[\mathcal{M}]}$ on the Jacobi group $S L(2, \mathbb{R}) \ltimes H_{\mathbb{R}}^{(n, m)} \hookrightarrow G^{J}$ by

$$
\begin{equation*}
\Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu, \kappa):=\sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f\right](\omega), \tag{3.9}
\end{equation*}
$$

where $(\tau, \phi) \in S L(2, \mathbb{R})$ and $(\lambda, \mu ; \kappa) \in H_{\mathbb{R}}^{(n, m)}$. The function $\Theta_{f}^{[\mathcal{M}]}$ is called the theta sum of index \mathcal{M} associated to a Schwartz function f. The projective representation $\pi_{\mathcal{M}}$ of the Jacobi group G^{J} was already defined by Formula (2.8). More precisely, for $\tau=u+i v \in \mathbb{H}_{1}$ and $(\lambda, \mu ; \kappa) \in H_{\mathbb{R}}^{(n, m)}$, we have

$$
\begin{aligned}
& \Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu, \kappa)=v^{\frac{m n}{4}} e^{2 \pi i \sigma\left(\mathcal{M}\left(\kappa+\mu^{t} \lambda\right)\right)} \\
& \quad \times \sum_{\omega \in \mathbb{Z}^{(m, n)}} e^{\pi i\left\{u\|\omega+\lambda\|_{\mathcal{M}}^{2}+2(\omega, \mu)_{\mathcal{M}}\right\}}\left[R_{\mathcal{M}}(i, \phi) f\right]\left(v^{1 / 2}(\omega+\lambda)\right) .
\end{aligned}
$$

Lemma 3.2. We set $f_{\phi}:=\tilde{R}_{\mathcal{M}}(i, \phi) f$ for $f \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$. Then for any $R>1$, there exists a constant C_{R} such that for all $x \in \mathbb{R}^{(m, n)}$ and $\phi \in \mathbb{R}$,

$$
\left|f_{\phi}(x)\right| \leq C_{R}\left(1+\|x\|_{\mathcal{M}}\right)^{-R}
$$

Proof. Following the arguments in the proof of Lemma 4.3 in [6], pp. 428-429, we get the desired result.

Theorem 3.1 (Jacobi 1). Let \mathcal{M} be a positive definite symmetric integral matrix of degree m such that $\mathcal{M} \mathbb{Z}^{(m, n)}=\mathbb{Z}^{(m, n)}$. Then for any Schwartz function $f \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$, we have
$\Theta_{f}^{[\mathcal{M}]}\left(-\frac{1}{\tau}, \phi+\arg \tau ;-\mu, \lambda, \kappa\right)=(\operatorname{det} \mathcal{M})^{-\frac{n}{2}} c_{\mathcal{M}}(S,(\tau, \phi)) \Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu, \kappa)$,
where

$$
c_{\mathcal{M}}(S,(\tau, \phi)):=e^{i \pi m n \operatorname{sign}(\sin \phi \sin (\phi+\arg \tau))}
$$

Proof. First we recall that for any Schwartz function $\varphi \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$, the Fourier transform $\mathscr{F} \varphi$ of φ is given by

$$
(\mathscr{F} \varphi)(x)=\int_{\mathbb{R}^{(m, n)}} \varphi(y) e^{-2 \pi i \sigma\left(y^{t} x\right)} d y
$$

Now we put

$$
S=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \in S L(2, \mathbb{Z}) \hookrightarrow S p(n, \mathbb{R})
$$

and for any $F \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$, we put

$$
F_{\mathcal{M}}(x):=F\left(\mathcal{M}^{-1} x\right), \quad x \in \mathbb{R}^{(m, n)}
$$

According to Formula (2.13), for any $F \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$,

$$
\begin{aligned}
{\left[R_{\mathcal{M}}(S) F\right](x) } & =(\operatorname{det} \mathcal{M})^{\frac{n}{2}} \int_{\mathbb{R}^{(m, n)}} F(y) e^{-2 \pi i \sigma\left(\mathcal{M} y^{t} x\right)} d y \\
& =(\operatorname{det} \mathcal{M})^{-\frac{n}{2}} \int_{\mathbb{R}^{(m, n)}} F\left(\mathcal{M}^{-1} y\right) e^{-2 \pi i \sigma\left(y^{t} x\right)} d y \\
& =(\operatorname{det} \mathcal{M})^{-\frac{n}{2}} \int_{\mathbb{R}^{(m, n)}} F_{\mathcal{M}}(y) e^{-2 \pi i \sigma\left(y^{t} x\right)} d y \\
& =(\operatorname{det} \mathcal{M})^{-\frac{n}{2}}\left[\mathscr{F} F_{\mathcal{M}}\right](x)
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\mathscr{F} F_{\mathcal{M}}=(\operatorname{det} \mathcal{M})^{\frac{n}{2}} R_{\mathcal{M}}(S) F \quad \text { for } F \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right) \tag{3.10}
\end{equation*}
$$

By Lemma 3.1, we get easily

$$
\begin{equation*}
S \cdot(\tau, \phi)=\left(-\frac{1}{\tau}, \phi+\arg \tau\right) \tag{3.11}
\end{equation*}
$$

If we take $F=\pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f$ for $f \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$, a fixed element $(\lambda, \mu ; \kappa) \in H_{\mathbb{R}}^{(n, m)}$ and an fixed element $(\tau, \phi) \in S L(2, \mathbb{R})$, then it is easily seen that $F \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$.

According to Formulas (3.11), if we take $F=\pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f$ for $f \in$ $\mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$,

$$
\begin{aligned}
{\left[R_{\mathcal{M}}(S) F\right](x) } & =\left[R_{\mathcal{M}}(S) \pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f\right](x), \quad x \in \mathbb{R}^{(m, n)} \\
& =\left[R_{\mathcal{M}}(S) \mathscr{W}_{\mathcal{M}}(\lambda, \mu ; \kappa) R_{\mathcal{M}}(\tau, \phi) f\right](x)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\mathscr{W}_{\mathcal{M}}\left((\lambda, \mu) S^{-1} ; \kappa\right) R_{\mathcal{M}}(S) R_{\mathcal{M}}(\tau, \phi) f\right](x) \\
& =c_{\mathcal{M}}(S,(\tau, \phi))^{-1}\left[\mathscr{W}_{\mathcal{M}}(-\mu, \lambda ; \kappa) R_{\mathcal{M}}(S \cdot(\tau, \phi)) f\right](x) \\
& =c_{\mathcal{M}}(S,(\tau, \phi))^{-1}\left[\mathscr{W}_{\mathcal{M}}(-\mu, \lambda ; \kappa) R_{\mathcal{M}}\left(-\frac{1}{\tau}, \phi+\arg \tau\right) f\right](x) \\
& =c_{\mathcal{M}}(S,(\tau, \phi))^{-1}\left[\pi_{\mathcal{M}}\left((-\mu, \lambda ; \kappa)\left(-\frac{1}{\tau}, \phi+\arg \tau\right)\right) f\right](x) .
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
\left[R_{\mathcal{M}}(S) F\right](x)=c_{\mathcal{M}}(S,(\tau, \phi))^{-1}\left[\pi_{\mathcal{M}}\left((-\mu, \lambda ; \kappa)\left(-\frac{1}{\tau}, \phi+\arg \tau\right)\right) f\right](x) \tag{3.12}
\end{equation*}
$$

According to Poisson summation formula, we have

$$
\begin{equation*}
\sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\mathscr{F} F_{\mathcal{M}}\right](\omega)=\sum_{\omega \in \mathbb{Z}^{(m, n)}} F_{\mathcal{M}}(\omega) \tag{3.13}
\end{equation*}
$$

It follows from (3.10) and (3.12) that

$$
\begin{aligned}
& \sum_{\omega \in \mathbb{Z}(m, n)}\left[\mathscr{F} F_{\mathcal{M}}\right](\omega) \\
= & (\operatorname{det} \mathcal{M})^{\frac{n}{2}} \sum_{\omega \in \mathbb{Z}(m, n)}\left[R_{\mathcal{M}}(S) F\right](\omega) \\
= & (\operatorname{det} \mathcal{M})^{\frac{n}{2}} c_{\mathcal{M}}(S,(\tau, \phi))^{-1} \\
& \times \sum_{\omega \in \mathbb{Z}(m, n)}\left[\pi_{\mathcal{M}}\left((-\mu, \lambda ; \kappa)\left(-\frac{1}{\tau}, \phi+\arg \tau\right)\right) f\right](x) \\
= & (\operatorname{det} \mathcal{M})^{\frac{n}{2}} c_{\mathcal{M}}(S,(\tau, \phi))^{-1} \Theta_{f}^{[\mathcal{M}]}\left(-\frac{1}{\tau}, \phi+\arg \tau ;-\mu, \lambda, \kappa\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \sum_{\omega \in \mathbb{Z}^{(m, n)}} F_{\mathcal{M}}(\omega) \\
= & \sum_{\omega \in \mathbb{Z}^{(m, n)}} F\left(\mathcal{M}^{-1} \omega\right) \\
= & \sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f\right]\left(\mathcal{M}^{-1} \omega\right) \\
= & \sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f\right](\omega) \quad\left(\because \mathcal{M}^{-1} \mathbb{Z}^{(m, n)}=\mathbb{Z}^{(m, n)}\right) \\
= & \Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu, \kappa) .
\end{aligned}
$$

Hence from (3.13) we obtain the desired formula
$\Theta_{f}^{[\mathcal{M}]}\left(-\frac{1}{\tau}, \phi+\arg \tau ;-\mu, \lambda, \kappa\right)=(\operatorname{det} \mathcal{M})^{-\frac{n}{2}} c_{\mathcal{M}}(S,(\tau, \phi)) \Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu, \kappa)$.
If
$S=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right), \quad(\tau, \phi)=\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right) \quad$ and $\quad S \cdot(\tau, \phi)=\left(\begin{array}{ll}a_{3} & b_{3} \\ c_{3} & d_{3}\end{array}\right) \in S L(2, \mathbb{R})$,
according to Lemma 3.1, we get easily

$$
c_{1} c_{2} c_{3}=\left(u^{2}+v^{2}\right)^{1 / 2} \sin \phi \sin (\phi+\arg \tau)
$$

where

$$
(\tau, \phi)=\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
v^{1 / 2} & 0 \\
0 & v^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
$$

is the Iwasawa decomposition of $(\tau, \phi) \in S L(2, \mathbb{R})$. Thus we obtain

$$
c_{\mathcal{M}}(S,(\tau, \phi))=e^{i \pi m n \operatorname{sign}\left(c_{1} c_{2} c_{3}\right)}=e^{i \pi m n \operatorname{sign}(\sin \phi \sin (\phi+\arg \tau))} .
$$

This completes the proof.
Theorem 3.2 (Jacobi 2). Let $\mathcal{M}=\left(\mathcal{M}_{k l}\right)$ be a positive definite symmetric integral $m \times m$ matrix and let $s=\left(s_{k j}\right) \in \mathbb{Z}^{(m, n)}$ be integral. Then we have

$$
\Theta_{f}^{[\mathcal{M}]}\left(\tau+2, \phi ; \lambda, s-2 \lambda+\mu, \kappa-s^{t} \lambda\right)=\Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu, \kappa)
$$

for all $(\tau, \phi) \in S L(2, \mathbb{R})$ and $(\lambda, \mu ; \kappa) \in H_{\mathbb{R}}^{(n, m)}$.
Proof. For brevity, we put $T_{*}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$. According to Lemma 3.1, for any $(\tau, \phi) \in S L(2, \mathbb{R})$, the multiplication of T_{*} and (τ, ϕ) is given by

$$
\begin{equation*}
T_{*}(\tau, \phi)=(\tau+2, \phi) . \tag{3.14}
\end{equation*}
$$

For $s \in \mathbb{R}^{(m, n)},(\lambda, \mu ; \kappa) \in H_{\mathbb{R}}^{(n, m)}$ and $(\tau, \phi) \in S L(2, \mathbb{R})$, according to (3.14),

$$
\begin{aligned}
& \pi_{\mathcal{M}}\left((0, s ; 0) T_{*}\right) \pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) \\
= & \mathscr{W}_{\mathcal{M}}(0, s ; 0) R_{\mathcal{M}}\left(T_{*}\right) \mathscr{W}_{\mathcal{M}}(\lambda, \mu ; \kappa) R_{\mathcal{M}}(\tau, \phi) \\
= & \mathscr{W}_{\mathcal{M}}(0, s ; 0) \mathscr{W}_{\mathcal{M}}\left((\lambda, \mu) T_{*}^{-1} ; \kappa\right) R_{\mathcal{M}}\left(T_{*}\right) R_{\mathcal{M}}(\tau, \phi) \\
= & c_{\mathcal{M}}\left(T_{*},(\tau, \phi)\right)^{-1} \mathscr{W}_{\mathcal{M}}\left(\lambda, s-2 \lambda+\mu ; \kappa-s^{t} \lambda\right) R_{\mathcal{M}}\left(T_{*}(\tau, \phi)\right) \\
= & \mathscr{W}_{\mathcal{M}}\left(\lambda, s-2 \lambda+\mu ; \kappa-s^{t} \lambda\right) R_{\mathcal{M}}(\tau+2, \phi) \\
= & \pi_{\mathcal{M}}\left(\left(\lambda, s-2 \lambda+\mu ; \kappa-s^{t} \lambda\right)(\tau+2, \phi)\right)
\end{aligned}
$$

Here we used the fact that $c_{\mathcal{M}}\left(T_{*},(\tau, \phi)\right)=1$ because T_{*} is upper triangular.
On the other hand, according to the assumptions on \mathcal{M} and s, for $f \in$ $\mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$ and $\omega \in \mathbb{Z}^{(m, n)}$, using Formulas (2.1), (2.11) or (3.6), we have

$$
\begin{aligned}
& {\left[\pi_{\mathcal{M}}\left((0, s ; 0) T_{*}\right) \pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f\right](\omega) } \\
= & {\left[\mathscr{W}_{\mathcal{M}}(0, s ; 0) R_{\mathcal{M}}\left(T_{*}\right) \pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f\right](\omega) } \\
= & e^{2 \pi i \sigma\left(\mathcal{M} \omega^{t} s\right)} \cdot e^{2\|\omega\|_{\mathcal{M}}^{2} \pi i}\left[R_{\mathcal{M}}(i, 0) \pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f\right](\omega)
\end{aligned}
$$

$$
=\left[\pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f\right](\omega)
$$

Here we used the facts that

$$
e^{2 \pi i \sigma\left(\mathcal{M} \omega^{t} s\right)}=1, \quad e^{2\|\omega\|_{\mathcal{M}}^{2} \pi i}=1 \quad \text { and } \quad R_{\mathcal{M}}(i, 0) f=f(\text { cf. (3.7)). }
$$

Therefore for $f \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$,

$$
\begin{aligned}
& \Theta_{f}^{[\mathcal{M}]}\left(\tau+2, \phi ; \lambda, s-2 \lambda+\mu, \kappa-s^{t} \lambda\right) \\
= & \sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\pi_{\mathcal{M}}\left(\left(\lambda, s-2 \lambda+\mu, \kappa-s^{t} \lambda\right)(\tau+2, \phi)\right) f\right](\omega) \\
= & \sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\pi_{\mathcal{M}}\left((0, s ; 0) T_{*}\right) \pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f\right](\omega) \\
= & \sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f\right](\omega) \\
= & \Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu, \kappa) .
\end{aligned}
$$

This completes the proof.
Theorem 3.3 (Jacobi 3). Let $\mathcal{M}=\left(\mathcal{M}_{k l}\right)$ be a positive definite symmetric integral $m \times m$ matrix and let $\left(\lambda_{0}, \mu_{0} ; \kappa_{0}\right) \in H_{\mathbb{Z}}^{(m, n)}$ be an integral element of $H_{\mathbb{R}}^{(n, m)}$. Then we have

$$
\begin{aligned}
& \Theta_{f}^{[\mathcal{M}]}\left(\tau, \phi ; \lambda+\lambda_{0}, \mu+\mu_{0}, \kappa+\kappa_{0}+\lambda_{0}{ }^{t} \mu-\mu_{0}{ }^{t} \lambda\right) \\
= & e^{\pi i \sigma\left(\mathcal{M}\left(\kappa_{0}+\mu_{0}{ }^{t} \lambda_{0}\right)\right)} \Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu, \kappa)
\end{aligned}
$$

for all $(\tau, \phi) \in S L(2, \mathbb{R})$ and $(\lambda, \mu ; \kappa) \in H_{\mathbb{R}}^{(n, m)}$.
Proof. For any $f \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$, we have

$$
\begin{aligned}
& \sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\mathscr{W}_{\mathcal{M}}\left(\lambda_{0}, \mu_{0} ; \kappa_{0}\right) \pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f\right](\omega) \\
= & \sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\mathscr{W}_{\mathcal{M}}\left(\lambda_{0}, \mu_{0} ; \kappa_{0}\right) \mathscr{W}_{\mathcal{M}}(\lambda, \mu ; \kappa) R_{\mathcal{M}}(\tau, \phi) f\right](\omega) \\
= & \left.\sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\mathscr{W}_{\mathcal{M}}\left(\lambda_{0}+\lambda, \mu_{0}+\mu ; \kappa_{0}+\kappa+\lambda_{0}{ }^{t} \mu-\mu_{0}{ }^{t} \lambda\right)\right) R_{\mathcal{M}}(\tau, \phi) f\right](\omega) \\
= & \sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\pi_{\mathcal{M}}\left(\left(\lambda_{0}+\lambda, \mu_{0}+\mu ; \kappa_{0}+\kappa+\lambda_{0}{ }^{t} \mu-\mu_{0}{ }^{t} \lambda\right)(\tau, \phi)\right) f\right](\omega) \\
= & \Theta_{f}^{[\mathcal{M}]}\left(\tau, \phi ; \lambda+\lambda_{0}, \mu+\mu_{0}, \kappa+\kappa_{0}+\lambda_{0}{ }^{t} \mu-\mu_{0}{ }^{t} \lambda\right) .
\end{aligned}
$$

On the other hand, for any $f \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$, we have

$$
\sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\mathscr{W}_{\mathcal{M}}\left(\lambda_{0}, \mu_{0} ; \kappa_{0}\right) \pi_{\mathcal{M}}((\lambda, \mu ; \kappa)(\tau, \phi)) f\right](\omega)
$$

$$
\begin{aligned}
& =\sum_{\omega \in \mathbb{Z}^{(m, n)}} e^{\pi i \sigma\left\{\mathcal{M}\left(\kappa_{0}+\mu_{0}{ }^{t} \lambda_{0}+2 \omega^{t} \mu_{0}\right)\right\}}\left[\pi_{\mathcal{M}}(\tau, \phi ; \lambda, \mu, \kappa) f\right]\left(\omega+\lambda_{0}\right) \\
& =e^{\pi i \sigma\left\{\mathcal{M}\left(\kappa_{0}+\mu_{0}{ }^{t} \lambda_{0}\right\}\right.} \sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\pi_{\mathcal{M}}(\tau, \phi ; \lambda, \mu, \kappa) f\right]\left(\omega+\lambda_{0}\right) \quad\left(\because \mu_{0} \text { is integral }\right) \\
& =e^{\pi i \sigma\left\{\mathcal{M}\left(\kappa_{0}+\mu_{0}{ }^{t} \lambda_{0}\right\}\right.} \sum_{\omega \in \mathbb{Z}^{(m, n)}}\left[\pi_{\mathcal{M}}(\tau, \phi ; \lambda, \mu, \kappa) f\right](\omega) \quad\left(\because \lambda_{0} \text { is integral }\right) \\
& =e^{\pi i \sigma\left\{\mathcal{M}\left(\kappa_{0}+\mu_{0}{ }^{t} \lambda_{0}\right\}\right.} \Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu, \kappa)
\end{aligned}
$$

Finally we obtain the desired result.
We put $V(m, n)=\mathbb{R}^{(m, n)} \times \mathbb{R}^{(m, n)}$. Let

$$
G^{(m, n)}:=S L(2, \mathbb{R}) \ltimes V(m, n)
$$

be the group with the following multiplication law

$$
\begin{equation*}
\left(g_{1},\left(\lambda_{1}, \mu_{1}\right)\right) \cdot\left(g_{2},\left(\lambda_{2}, \mu_{2}\right)\right)=\left(g_{1} g_{2},\left(\lambda_{1}, \mu_{1}\right) g_{2}+\left(\lambda_{2}, \mu_{2}\right)\right) \tag{3.15}
\end{equation*}
$$

where $g_{1}, g_{2} \in S L(2, \mathbb{R})$ and $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \in \mathbb{R}^{(m, n)}$.
We define

$$
\Gamma^{(m, n)}:=S L(2, \mathbb{Z}) \ltimes H_{\mathbb{Z}}^{(n, m)}
$$

Then $\Gamma^{(m, n)}$ acts on $G^{(m, n)}$ naturally through the multiplication law (3.15).
Lemma 3.3. $\Gamma^{(m, n)}$ is generated by the elements

$$
(S,(0,0)), \quad\left(T_{b},(0, s)\right) \quad \text { and } \quad\left(I_{2},\left(\lambda_{0}, \mu_{0}\right)\right)
$$

where

$$
S=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \quad T_{\mathrm{b}}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } s, \lambda_{0}, \mu_{0} \in \mathbb{Z}^{(m, n)}
$$

Proof. Since $S L(2, \mathbb{Z})$ is generated by S and T_{b}, we get the desired result.
We define

$$
\begin{aligned}
& \Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu) \\
= & v^{\frac{m n}{4}} \sum_{\omega \in \mathbb{Z}^{(m, n)}} e^{\pi i\left\{u\|\omega+\lambda\|_{\mathcal{M}}^{2}+2(\omega, \mu)_{\mathcal{M}}\right\}}\left[R_{\mathcal{M}}(i, \phi) f\right]\left(v^{1 / 2}(\omega+\lambda)\right) .
\end{aligned}
$$

Theorem 3.4. Let $\Gamma_{[2]}^{(m, n)}$ be the subgroup of $\Gamma^{(m, n)}$ generated by the elements

$$
(S,(0,0)), \quad\left(T_{*},(0, s)\right) \quad \text { and } \quad\left(I_{2},\left(\lambda_{0}, \mu_{0}\right)\right),
$$

where

$$
T_{*}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \quad \text { and } s, \lambda_{0}, \mu_{0} \in \mathbb{Z}^{(m, n)}
$$

Let $\mathcal{M}=\left(\mathcal{M}_{k l}\right)$ be a positive definite symmetric unimodular integral $m \times m$ matrix such that $\mathcal{M} \mathbb{Z}^{(m, n)}=\mathbb{Z}^{(m, n)}$. Then for $f, g \in \mathscr{S}\left(\mathbb{R}^{(m, n)}\right)$, the function

$$
\Theta_{f}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu) \overline{\Theta_{g}^{[\mathcal{M}]}(\tau, \phi ; \lambda, \mu)}
$$

is invariant under the action of $\Gamma_{[2]}^{(m, n)}$ on $G^{(m, n)}$.
Proof. The proof follows directly from Theorem 3.1 (Jacobi 1), Theorem 3.2 (Jacobi 2) and Theorem 3.3 (Jacobi 3) because the left actions of the generators of $\Gamma_{[2]}^{(m, n)}$ are given by

$$
\begin{aligned}
& ((\tau, \phi),(\lambda, \mu)) \longmapsto\left(\left(-\frac{1}{\tau}, \phi+\arg \tau\right),(-\mu, \lambda)\right), \\
& ((\tau, \phi),(\lambda, \mu)) \longmapsto((\tau+2, \phi),(\lambda, s-2 \lambda+\mu))
\end{aligned}
$$

and

$$
((\tau, \phi),(\lambda, \mu)) \longmapsto\left((\tau, \phi),\left(\lambda+\lambda_{0}, \mu+\mu_{0}\right)\right) .
$$

References

[1] R. Berndt and R. Schmidt, Elements of theRepresentation Theory of the Jacobi Group, Birkhäuser, 1998.
[2] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math., 55, Birkhäuser, Boston, Basel and Stuttgart, 1985.
[3] E. Freitag, Siegelsche Modulfunktionen, Grundlehren de mathematischen Wissenschaften 55, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
[4] M. Itoh, H. Ochiai, and J.-H. Yang, Invariant Differential Operators on the Siegel-Jacobi Space, submitted, 2015.
[5] G. Lion and M. Vergne, The Weil representation, Maslov index and Theta seires, Progress in Math., 6, Birkhäuser, Boston, Basel and Stuttgart, 1980.
[6] J. Marklof, Pair correlation densities of inhomogeneous quadratic forms, Ann. of Math. 158 (2003), no. 2, 419-471.
[7] D. Mumford, Tata Lectures on Theta I, Progress in Math. 28, Boston-Basel-Stuttgart, 1983.
[8] A. Pitale, Jacobi Maass forms, Abh. Math. Semin. Univ. Hambg. 79 (2009), no. 1, 87-111.
[9] C. L. Siegel, Indefinite quadratische Formen und Funnktionentheorie I and II, Math. Ann. 124 (1951), 17-54 and Math. Ann. 124 (1952), 364-387; Gesammelte Abhandlungen, Band III, Springer-Verlag (1966), 105-142 and 154-177.
[10] A. Weil, Sur certains groupes d'operateurs unitares, Acta Math. 111 (1964), 143-211; Collected Papers (1964-1978), Vol. III, Springer-Verlag, 1-69, 1979.
[11] J.-H. Yang, Harmonic analysis on the quotient spaces of Heisenberg groups, Nagoya Math. J. 123 (1991), 103-117.
[12] , The Siegel-Jacobi operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135146.
[13] _, Remarks on Jacobi forms of higher degree, Proc. of the 1993 Workshop on Automorphic Forms and Related Topics, the Pyungsan Institute for Mathematical Sciences, Seoul, 33-58, 1993.
[14] , Harmonic analysis on the quotient Spaces of Heisenberg groups II, J. Number Theory 49 (1994), no. 1, 63-72.
[15] , Singular Jacobi forms, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2041-2049.
[16] _ Construction of vector valued modular forms from Jacobi forms, Canad. J. Math. 47 (1995), no. 6, 1329-1339.
[17] _, A decomposition theorem on differential polynomials of theta functions of high level, Japa. J. Math. 22 (1996), no. 1, 37-49.
[18], Fock representations of the Heisenberg group $H_{\mathbb{R}}^{(g, h)}$, J. Korean Math. Soc. 34 (1997), no. 2, 345-370.
[19] , Lattice representations of Heisenberg groups, Math. Ann. 317 (2000), no. 2, 309-323.
[20] , A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math. 32 (2006), no. 3, 701-712.
[21] , Invariant metrics and Laplacians on Siegel-Jacobi space, J. Number Theory 127 (2007), no. 1, 83-102.
[22] , A partial Cayley transform of Siegel-Jacobi disk, J. Korean Math. Soc. 45 (2008), no. 3, 781-794.
[23] , Invariant metrics and Laplacians on Siegel-Jacobi disk, Chinese Ann. Math. 31B (2010), no. 1, 85-100.
[24] , Heisenberg Group, Theta Functions and the Weil Representation, Kyung Moon Sa, Seoul, 2012.
[25] \qquad , A note on Maass-Jacobi forms II, Kyungpook Math. J. 53 (2013), no. 1, 49-86.
[26] _, Geometry and arithmetic on the Siegel-Jacobi space, Geometry and Analysis on Manifolds, In Memory of Professor Shoshichi Kobayashi (edited by T. Ochiai, A. Weinstein et al), Progress in Mathematics, Volume 308, 275-325 Birkhäuser, Springer International Publishing AG Switzerland, 2015.
[27] , Covariant maps for the Schrödinger-Weil representation, Bull. Korean Math. Soc. 52 (2015), no. 2, 627-647.
[28] J.-H. Yang, Y.-H. Yong, S.-N. Huh, J.-H. Shin, and G.-H. Min, Sectional curvatures of the Siegel-Jacobi space, Bull. Korean Math. Soc. 50 (2013), no. 3, 787-799.
[29] C. Ziegler, Jacobi forms of higher degree, Abh. Math. Semin. Univ. Hambg. 59 (1989), 191-224.

Jae-Hyun Yang
Department of Mathematics
Inha University
Incheon 22212, Korea
E-mail address: jhyang@inha.ac.kr

