THREE DIFFERENT WAYS TO OBTAIN THE VALUES OF HYPER m-ARY PARTITION FUNCTIONS

Jiae Eom, Gyeonga Jeong, and Jaebum Sohn

Abstract

We consider a natural generalization of $h_{2}(n)$, denoted $h_{m}(n)$, which is the number of partitions of n into parts which are power of $m \geq 2$ wherein each power of m is allowed to be used as a part at most m times. In this note, we approach in three different ways using the recurrences, the matrix and the tree to calculate the value of $h_{m}(n)$

1. Introduction

In the late 1960s, the unrestricted binary partition function was first studied by R. Churchhouse [7]. It is then followed by active studies on numerous functions which enumerate partitions into powers of a fixed number m, by \varnothing. Rødseth [15], G. E. Andrews [1], H. Gupta [12], and G. Dirdal [9, 10]. Thereafter, although a paper entitled "Some binary partition functions" was published by B. Reznick [14] in 1990, there had been quite a long time gap in studies until 2000 when interestingly, the Calkin-Wilf tree was introduced by N. Calkin and H. S. Wilf [6] who found the relevance between the hyperbinary partition and the rational recount using the tree. With this as a momentum, in context of trees, active studies are continued such as a restudy on the Stern-Brocot tree, its relevance to the Calkin-Wilf tree, a q-analogue of the Calkin-Wilf, and so on $[2,3,4,5]$. Also, in perspective of partition functions, numerous authors continue to study on m-ary partition functions, m-ary overpartition, hyper m ary partition, and hyper m-ary overpartition $[8,11,13,16,17]$. In this note, we take a look into arithmetic properties for hyper m-ary partition functions of K. M. Courtright and J. A. Sellers [8]. They generalized hyperbinary partition, $h_{2}(n)$, into $h_{m}(n)$ as follows. Let $h_{m}(n)$ be the number of partitions of n into parts which are powers of $m \geq 2$ wherein each power of m is allowed to be used as a part at most m times. For fixed $m \geq 2$, the generating function for $h_{m}(n)$

[^0]is defined
$$
H_{m}(q):=\sum_{n \geq 0} h_{m}(n) q^{n}=\prod_{i \geq 0}\left(1+q^{m^{i}}+q^{2 m^{i}}+\cdots+q^{m \cdot m^{i}}\right)
$$
when $h_{m}(0)=1$. Using the following recurrences obtained from the definition above,
\[

$$
\begin{align*}
h_{m}(X m) & =h_{m}(X)+h_{m}(X-1) \tag{1}\\
h_{m}(X m+r) & =h_{m}(X) \quad \text { for } 1 \leq r \leq m-1, \tag{2}
\end{align*}
$$
\]

they proved the following theorem.
Theorem 1.1 (Courtright and Sellers [8]). Let $m \geq 3$ and $j \geq 1$ be fixed integers and let k be an integer between 2 and $m-1$. Then, for all $n \geq 0$

$$
h_{m}\left(m^{j} n+m^{j-1} k\right)=j h_{m}(n) .
$$

In this paper, from the theorem above, we introduce an extended theorem including the case where $k=1$ and give some more general terms of hyper m-ary partition. Theorems to prove in Section 2 are:

Theorem 2.3. Let X and p be positive integers. Then

$$
h_{m}\left(X m^{p}\right)=p h_{m}(X-1)+h_{m}(X)
$$

and
Theorem 2.5. Let X and $q \geq 2$ be positive integers. Then

$$
h_{m}\left(X m^{q}+\sum_{i=1}^{q-1} m^{i}\right)=h_{m}(X-1)+q h_{m}(X) .
$$

Also, in Section 3 we give proofs with a different perspective and calculate the value of $h_{m}(n)$ using matrices. In Section 4, we introduce a generalization of the Calkin-Wilf tree, the hyper m-ary partition tree, which is composed of enumerating two consecutive terms $\frac{h_{m}(n-1)}{h_{m}(n)}$ in fraction.

2. Some general terms obtained by using recurrence relations

In this section, we examine how to calculate value of $h_{m}(n)$ when n is a positive integer and $m \geq 3$ with a special form. It is easy to find Lemma 2.1 below from (2).

Lemma 2.1. Let $X \geq 1$ and $p \geq 0$ be integers. Then for an integer $1 \leq r_{i} \leq$ $m-1(0 \leq i \leq p-1)$, we have

$$
\begin{equation*}
h_{m}\left(X m^{p}+\sum_{i=0}^{p-1} r_{i} m^{i}\right)=h_{m}(X) . \tag{3}
\end{equation*}
$$

Proof. By (2),

$$
\begin{aligned}
h_{m}\left(X m^{p}+\sum_{i=0}^{p-1} r_{i} m^{i}\right) & =h_{m}\left(X m^{p}+r_{0}+\sum_{i=1}^{p-1} r_{i} m^{i}\right) \\
& =h_{m}\left(X m^{p-1}+\sum_{i=1}^{p-1} r_{i} m^{i-1}\right) \\
& =h_{m}\left(X m^{p-1}+r_{1}+\sum_{i=2}^{p-1} r_{i} m^{i-1}\right) \\
& =h_{m}\left(X m^{p-2}+\sum_{i=2}^{p-1} r_{i} m^{i-2}\right) \\
& =\cdots=h_{m}\left(X m+r_{p-1}\right)=h_{m}(X) .
\end{aligned}
$$

This lemma says that if n is written as an m-ary number which has no 0 in any digits, then we can evaluate $h_{m}(n)$ easily.
Lemma 2.2. Let X and p be positive integers. Then

$$
\begin{equation*}
h_{m}\left(X m^{p}-1\right)=h_{m}(X-1) . \tag{4}
\end{equation*}
$$

Proof. From Lemma 2.1,

$$
\begin{aligned}
h_{m}\left(X m^{p}-1\right) & =h_{m}\left((X-1) m^{p}+\sum_{i=0}^{p-1}(m-1) m^{i}\right) \\
& =h_{m}(X-1)
\end{aligned}
$$

Using Lemma 2.2 above, we can derive the following theorem.
Theorem 2.3. Let X and p be positive integers. Then

$$
\begin{equation*}
h_{m}\left(X m^{p}\right)=p h_{m}(X-1)+h_{m}(X) . \tag{5}
\end{equation*}
$$

Proof. For $p=1,(5)$ is same as (1). For $p \geq 2$, by (1) and (4),

$$
\begin{aligned}
h_{m}\left(X m^{p}\right) & =h_{m}\left(X m^{p-1}\right)+h_{m}\left(X m^{p-1}-1\right) \\
& =h_{m}\left(X m^{p-1}\right)+h_{m}(X-1) \\
& =h_{m}\left(X m^{p-2}\right)+2 h_{m}(X-1) \\
& =\cdots=h_{m}(X)+p h_{m}(X-1)
\end{aligned}
$$

This shows that, if n written as m-ary number has 0 's in its every digit only except for the highest, then $h_{m}(n)$ is equal to the number of 0 's plus one.
Corollary 2.4. Let k and p_{i} be positive integers and let r_{i} be an integer between 2 and $m-1$ for $1 \leq i \leq k$. Then

$$
\begin{equation*}
h_{m}\left(\sum_{i=1}^{k} r_{i} m^{i-1+\sum_{j=1}^{i} p_{j}}\right)=\prod_{i=1}^{k}\left(p_{i}+1\right) \tag{6}
\end{equation*}
$$

Proof. By applying Theorem 2.3 and (2) successively,

$$
\begin{aligned}
& h_{m}\left(\sum_{i=1}^{k} r_{i} m^{i-1+p_{i}+\cdots+p_{2}+p_{1}}\right) \\
= & h_{m}\left(\left(\sum_{i=2}^{k} r_{i} m^{i-1+p_{i}+\cdots+p_{2}+p_{1}}\right)+r_{1} m^{p_{1}}\right) \\
= & h_{m}\left(\left(\sum_{i=2}^{k} r_{i} m^{i-1+p_{i}+\cdots+p_{2}}\right)+r_{1}\right) \\
& +p_{1} h_{m}\left(\left(\sum_{i=2}^{k} r_{i} m^{i-1+p_{i}+\cdots+p_{2}}\right)+r_{1}-1\right) \\
= & \left(p_{1}+1\right) h_{m}\left(\sum_{i=2}^{k} r_{i} m^{i-2+p_{i}+\cdots+p_{2}}\right) \\
= & \cdots=\left(p_{1}+1\right)\left(p_{2}+1\right) \cdots\left(p_{k-1}+1\right) h_{m}\left(r_{k} m^{p_{k}}\right) \\
= & \prod_{i=1}^{k}\left(p_{i}+1\right) .
\end{aligned}
$$

By combining Lemma 2.1 and Corollary 2.4, we can evaluate $h_{m}(n)$, where n has no 1 's when it is written as m-ary number.

Theorem 2.5. Let X and $q \geq 2$ be positive integers. Then

$$
\begin{equation*}
h_{m}\left(X m^{q}+\sum_{i=1}^{q-1} m^{i}\right)=h_{m}(X-1)+q h_{m}(X) . \tag{7}
\end{equation*}
$$

Proof. First, by (1) and (2),

$$
\begin{aligned}
h_{m}\left(X m^{2}+m\right) & =h_{m}(X m+1)+h_{m}(X m) \\
& =2 h_{m}(X)+h_{m}(X-1)
\end{aligned}
$$

Then

$$
\begin{aligned}
& h_{m}\left(X m^{q}+\sum_{i=1}^{q-1} m^{i}\right) \\
= & h_{m}\left(X m^{q-1}+\sum_{i=0}^{q-2} m^{i}\right)+h_{m}\left(X m^{q-1}+\sum_{i=1}^{q-2} m^{i}\right) \\
= & h_{m}(X)+h_{m}\left(X m^{q-1}+\sum_{i=1}^{q-2} m^{i}\right) \\
= & 2 h_{m}(X)+h_{m}\left(X m^{q-2}+\sum_{i=1}^{q-3} m^{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\cdots=(q-2) h_{m}(X)+h_{m}\left(X m^{2}+m\right) \\
& =q h_{m}(X)+h_{m}(X-1),
\end{aligned}
$$

where we used (1) and (3) alternatively.
Corollary 2.6. Let X, p and q be positive integers and let r be an integer between 1 and $m-1$. Then

$$
\begin{equation*}
h_{m}\left(\left\{r m^{q-1}+\sum_{i=0}^{q-2} m^{i}\right\} m^{p}\right)=p q+1 \tag{8}
\end{equation*}
$$

Proof. By (5), (3), and (7),

$$
\begin{aligned}
& h_{m}\left(\left\{r m^{q-1}+\sum_{i=0}^{q-2} m^{i}\right\} m^{p}\right) \\
= & h_{m}\left(r m^{q-1}+\sum_{i=0}^{q-2} m^{i}\right)+p h_{m}\left(r m^{q-1}+\sum_{i=1}^{q-2} m^{i}\right) \\
= & 1+p q .
\end{aligned}
$$

If any number n written as m-ary number having 1 's and 0 's on every digits, then by using Theorem 2.3 and Theorem 2.5, we may calculate $h_{m}(n)$ easily.

3. A method using matrices

In this section, we show how to calculate $h_{m}(X)$ using matrices.
Lemma 3.1. Let $m \geq 3$ and X be positive integers and let r be an integer between 2 and $m-1$. Then

$$
\begin{align*}
\binom{h_{m}(X m-1)}{h_{m}(X m)} & =\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\binom{h_{m}(X-1)}{h_{m}(X)}, \tag{9}\\
\binom{h_{m}(X m)}{h_{m}(X m+1)} & =\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{h_{m}(X-1)}{h_{m}(X)}, \tag{10}\\
\binom{h_{m}(X m+r-1)}{h_{m}(X m+r)} & =\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\binom{h_{m}(X-1)}{h_{m}(X)} . \tag{11}
\end{align*}
$$

Proof. Using (2) with $r=m-1$, we deduce that

$$
h_{m}(X m-1)=h_{m}((X-1) m+(m-1))=h_{m}(X-1)
$$

which is (9), (10) and (11) are easy consequences of (1) and (2).
When m is an integer greater than or equal to 3 , and when r is an integer between 2 and $m-1$, we define the matrix as follows.

$$
M_{0}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), M_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), M_{r}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)
$$

Remark 3.2. Let $m \geq 3$ and X be positive integers and let r be some integer between 0 and $m-1$. Then we can rewrite Lemma 3.1 as follows.

$$
\begin{equation*}
\binom{h_{m}(X m+r-1)}{h_{m}(X m+r)}=M_{r}\binom{h_{m}(X-1)}{h_{m}(X)} . \tag{12}
\end{equation*}
$$

Theorem 3.3. Let $m \geq 3$ and k be positive integers and let $0 \leq r_{i} \leq m-1$ $(0 \leq i \leq k-1)$ and $1 \leq r_{k} \leq m-1$ be integers. Then

$$
h_{m}\left(\sum_{i=0}^{k} r_{i} m^{i}\right)=\left(\begin{array}{ll}
0 & 1 \tag{13}
\end{array}\right) M_{r_{0}} M_{r_{1}} \cdots M_{r_{k-1}}\binom{h_{m}\left(r_{k}-1\right)}{h_{m}\left(r_{k}\right)}
$$

Proof. By (12),

$$
\begin{aligned}
\binom{h_{m}\left(\sum_{i=0}^{k} r_{i} m^{i}-1\right)}{h_{m}\left(\sum_{i=0}^{k} r_{i} m^{i}\right)} & =\binom{h_{m}\left(\sum_{i=1}^{k} r_{i} m^{i}+r_{0}-1\right)}{h_{m}\left(\sum_{i=1}^{k} r_{i} m^{i}+r_{0}\right)} \\
& =M_{r_{0}}\binom{h_{m}\left(\sum_{i=1}^{k} r_{i} m^{i-1}-1\right)}{h_{m}\left(\sum_{i=1}^{k} r_{i} m^{i-1}\right)} \\
& =M_{r_{0}}\binom{h_{m}\left(\sum_{i=2}^{k} r_{i} m^{i-1}+r_{1}-1\right)}{h_{m}\left(\sum_{i=2}^{k} r_{i} m^{i-1}+r_{1}\right)} \\
& =M_{r_{0}} M_{r_{1}}\binom{h_{m}\left(\sum_{i=2}^{k} r_{i} m^{i-2}-1\right)}{h_{m}\left(\sum_{i=2}^{k} r_{i} m^{i-2}\right)} \\
& =\cdots=M_{r_{0}} M_{r_{1}} \cdots M_{r_{k-1}}\binom{h_{m}\left(r_{k}-1\right)}{h_{m}\left(r_{k}\right)} .
\end{aligned}
$$

After multiplying ($\left.\begin{array}{ll}0 & 1\end{array}\right)$ on both sides, the proof is now complete.
Theorem 3.3 explains that if a number, expressed as m-ary with $k+1$ digits, has a value of r_{i} in $(i+1)$ th digit from right to left, then the value of hyper m-ary can be calculated by multiplying pre-defined matrices $M_{r_{i}}$ from left to right. The following lemma is useful to simplify calculations.

Lemma 3.4. Let $m \geq 3, p$ and q be nonnegative integers and let r be an integer between 2 and $m-1$. Then

$$
\begin{align*}
M_{0}{ }^{p} M_{1}^{q} & =\left(\begin{array}{cc}
1 & q \\
p & p q+1
\end{array}\right), \tag{14}\\
M_{0}{ }^{p} M_{r}{ }^{q} & =\left(\begin{array}{cc}
0 & 1 \\
0 & p+1
\end{array}\right) . \tag{15}
\end{align*}
$$

Proof.

$$
M_{0}^{p} M_{1}^{q}=\left(\begin{array}{ll}
1 & 0 \\
p & 1
\end{array}\right)\left(\begin{array}{ll}
1 & q \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & q \\
p & p q+1
\end{array}\right)
$$

$$
M_{0}{ }^{p} M_{r}^{q}=\left(\begin{array}{ll}
1 & 0 \\
p & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
0 & p+1
\end{array}\right) .
$$

Now we give a new and short proof of theorems by using our method.
Proof. (Another proof of Theorem 1.1) Since $2 \leq k \leq m-1$,

$$
\begin{aligned}
h_{m}\left(m^{j} n+m^{j-1} k\right) & =\left(\begin{array}{ll}
0 & 1
\end{array}\right) M_{0}^{j-1} M_{k}\binom{h_{m}(n-1)}{h_{m}(n)} \\
& =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & j
\end{array}\right)\binom{h_{m}(n-1)}{h_{m}(n)} \\
& =j h_{m}(n),
\end{aligned}
$$

where we used Lemma 3.4 in the penultimate step.
Proof. (Another proof of Theorem 2.3)

$$
\begin{aligned}
h_{m}\left(X m^{p}\right) & =\left(\begin{array}{ll}
0 & 1
\end{array}\right) M_{0}{ }^{p}\binom{h_{m}(X-1)}{h_{m}(X)} \\
& =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
p & 1
\end{array}\right)\binom{h_{m}(X-1)}{h_{m}(X)} \\
& =p h_{m}(X-1)+h_{m}(X) .
\end{aligned}
$$

Proof. (Another proof of Theorem 2.5)

$$
\begin{aligned}
& h_{m}\left(X m^{q}+\sum_{i=1}^{q-1} m^{i}\right)=\left(\begin{array}{ll}
0 & 1
\end{array}\right) M_{0} M_{1}{ }^{q-1}\binom{h_{m}(X-1)}{h_{m}(X)} \\
& =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & q-1 \\
1 & q
\end{array}\right)\binom{h_{m}(X-1)}{h_{m}(X)} \\
& =h_{m}(X-1)+q h_{m}(X) \text {. }
\end{aligned}
$$

Proof. (Another proof of Corollary 2.6)

$$
\begin{aligned}
h_{m}\left(\left\{r m^{q-1}+\sum_{i=0}^{q-2} m^{i}\right\} m^{p}\right) & =\left(\begin{array}{ll}
0 & 1
\end{array}\right) M_{0}^{p} M_{1}^{q-1}\binom{h_{m}(r-1)}{h_{m}(r)} \\
& =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & q-1 \\
p & p(q-1)+1
\end{array}\right)\binom{1}{1} \\
& =p q+1 .
\end{aligned}
$$

By following the procedure described next, we may reduce calculation steps to reach the final result.

Step 0 : Write n as m-ary number written by $n=\left(r_{k} r_{k-1} \cdots r_{1} r_{0}\right)_{(m)}$.
Step 1: If consecutive non-zero numbers appear from the lowest digit, then remove the numbers.

Step 2 : If you see any digit between 2 and $m-1$, remove consecutive non-zero numbers right in front of the digit.

Step 3 : If you read from the lowest term and see any digit between 2 and $m-1$, then cut up to that number and repeat this Step 3 till you reach the highest digit.

Step 4: Change the number in the highest digit to 1 for ease of calculation.
Note that at the end of Step 4, all the digits are either 0 or 1 .
As an example, hyper 4-ary partition value of $2013032101012_{(4)}$ is calculated as

$$
\begin{aligned}
& h_{4}\left(2013032101012_{(4)}\right) \\
= & h_{4}\left(20130321010_{(4)}\right) \quad \text { by Step 1 } \\
= & h_{4}\left(203021010_{(4)}\right) \quad \text { by Step 2 } \\
= & h_{4}\left(20_{(4)}\right) \times h_{4}\left(30_{(4)}\right) \times h_{4}\left(21010_{(4)}\right) \quad \text { by Step } 3 \\
= & h_{4}\left(10_{(4)}\right) \times h_{4}\left(10_{(4)}\right) \times h_{4}\left(11010_{(4)}\right) \quad \text { by Step 4 } \\
= & 2 \times 2 \times 8=32 . \quad \text { by Corollary } 2.6 \text { and Theorem } 3.3
\end{aligned}
$$

4. Another proof using a tree

In this section, we construct a tree structure of fraction $\frac{h_{m}(n-1)}{h_{m}(n)}$ and then use this tree to reprove Theorems 2.3 and 2.5 for hyper m-ary partition function from a different perspective.

Let us explain the rules how to construct hyper m-ary tree.

- $\frac{1}{1}$ is at the top of the tree, and
- A parent $\frac{a}{b}$ has m children : from left to right, the first child is $\frac{a}{a+b}$, the second $\frac{a+b}{b}$, and the rest $\frac{b}{b}$.
- Make $m-2$ copies of the tree constructed by the previous rules, so that a total of $m-1$ same trees appear.

For example, Figure 1 below is the hyper trinary tree constructed by the rules explained above, and we can see how each vertex $\frac{h_{m}(n-1)}{h_{m}(n)}$ is labeled. The equalities in Figure 1 will be explained soon.

Figure 1. The hyper trinary partition tree

Values of $\frac{h_{3}(0)}{h_{3}(1)}$ and $\frac{h_{3}(1)}{h_{3}(2)}$, vertex of the root of the two trees, are same as $\frac{1}{1}$ because $h_{3}(0)=h_{3}(1)=h_{3}(2)=1$. Hence the hyper trinary partition tree is composed of two identical trees.

We call $\frac{h_{3}(0)}{h_{3}(1)}$ and $\frac{h_{3}(1)}{h_{3}(2)}$, roots of two trees, level 1, and six vertexes, two sets of three children under each root, level 2 . With this leveling, there are $2 \times 3^{k-1}$ vertexes in total at level k. Vertexes at level k from the left are as follows:

$$
\frac{h_{3}\left(3^{k-1}-1\right)}{h_{3}\left(3^{k-1}\right)}, \frac{h_{3}\left(3^{k-1}\right)}{h_{3}\left(3^{k-1}+1\right)}, \ldots, \frac{h_{3}\left(3^{k}-2\right)}{h_{3}\left(3^{k}-1\right)}
$$

If we express the numbers $3^{k-1}, 3^{k-1}+1, \ldots, 3^{k}-1$ as trinary number, then they are k digits number starting with either 1 or 2 . Also, regarding $h_{3}(n)$, the denominators of vertexes at level k, we can express n in trinary as

$$
\begin{gathered}
n=\sum_{i=0}^{k-1} r_{i} 3^{i} \\
\left(r_{i} \in\{0,1,2\}, 0 \leq i \leq k-2 \text { and } r_{k-1} \in\{1,2\}\right) .
\end{gathered}
$$

Here, values of r_{i} show the location of vertex $\frac{h_{3}(n-1)}{h_{3}(n)}$ in the tree. That is, at level 1 , it is the first tree on left if the highest digit, r_{k-1}, equals 1 , and the second tree on right if $r_{k-1}=2$. Also, when moving down from level i to $i+1$ $(i=1,2, \ldots, k-1)$, we choose $\left(r_{k-i-1}+1\right)$ th vertex from the left.
We can similarly construct hyper m-ary tree as follows.

Figure 2. The hyper m-ary partition tree

The tree structure above satisfies recurrences (1), (2) in Section 1, thus we can find the value of $h_{m}(n)$ using this hyper m-ary partition tree. For example, a vertex $\frac{h_{3}(189)}{h_{3}(190)}$ with its denominator $h_{3}(190)=h_{3}\left(21001_{(3)}\right)$ is located at where you start from the second tree, the second vertex from the left when going down to level 2 , then choose the first one from left to go level 3 , the first from left to level 4 again, and select the second from the left to the level 5.

From the tree above, we find $h_{3}(190)=5$. On the other hand, as the hyper trinary partition tree is composed of two identical trees, when n is expressed in trinary number we can consider only the case of the highest digit being 1. It means, the identical result is obtained by changing trinary number $21001_{(3)}$ to $11001_{(3)}$ when evaluating $h_{3}\left(21001_{(3)}\right)$.

We provide new proofs of Theorem 2.3 and Theorem 2.5 using hyper m-ary tree we constructed.

Proof. (Another proof of Theorem 2.3 using m-ary tree)
A term $\frac{h_{m}(X-1)}{h_{m}(X)}$ is located at a vertex in hyper m-ary partition tree. Let us assume this vertex as level 0 , and keep creating m-ary tree from it.

Assuming $h_{m}(X-1)$ as a and $h_{m}(X)$ as b for convenience' sake, keeping construction of the leftmost branch from level $0, \frac{a}{b}$, to level p results in the following.

From the tree above, the leftmost term of level p corresponds to $\frac{h_{m}\left(X m^{p}-1\right)}{h_{m}\left(X m^{p}\right)}$, thus it becomes

$$
h_{m}\left(X m^{p}\right)=p h_{m}(X-1)+h_{m}(X) .
$$

Proof. (Another proof of Theorem 2.5 using m-ary tree)
Similarly, assuming $h_{m}(X-1)$ as a and $h_{m}(X)$ as b for convenience' sake, let us create m-ary tree, keeping construction of the second leftmost branch from level $0, \frac{a}{b}$, to level q leads to the following.

From the tree above, the second leftmost term of level q corresponds to $\frac{h_{m}\left(X m^{q}+\sum_{i=1}^{q-1} m^{i}\right)}{h_{m}\left(X m^{q}+\sum_{i=0}^{q-1} m^{i}\right)}$, thus it becomes

$$
h_{m}\left(X m^{q}+\sum_{i=1}^{q-1} m^{i}\right)=q h_{m}(X)+h_{m}(X-1) .
$$

References

[1] G. E. Andrews, Congruence properties of the m-ary partition function, J. Number Theory 3 (1971), 104-110.
[2] B. P. Bates, M. W. Bunder, and K. P. Tognetti, Linkages between the Gauss map and the Stern-Brocot tree, Acta Math. Acad. Paedagog. Nyház. 22 (2006), no. 3, 217-235.
[3] _, Locating terms in the Stern-Brocot tree, European J. Combin. 31 (2010), no. 3, 1020-1033.
[4] , Linking the Calkin-Wilf and Stern-Brocot trees, European J. Combin. 31 (2010), no. 7, 1637-1661.
[5] B. Bates and T. Mansour, The q-Calkin-Wilf tree, J. Combin. Theory Ser. A 118 (2011), no. 3, 1143-1151.
[6] N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly 107 (2000), no. 4, 360-363.
[7] R. Churchhouse, Congruence properties of the binary partition function, Proc. Cambridge Philos. Soc. 66 (1969), 371-376.
[8] K. M. Courtright and J. A. Sellers, Arithmetic properties for hyper m-ary partition functions, Integers 4 (2004), A6, 5pp.
[9] G. Dirdal, On restricted m-ary partitions, Math. Scand. 37 (1975), no. 1, 51-60.
[10] \qquad , Congruences for m-ary partitions, Math. Scand. 37 (1975), no. 1, 76-82.
[11] L. L. Dolph, A. Reynolds, and J. A. Sellers, Congruences for a restricted m-ary partition function, Discrete Math. 219 (2000), 265-269.
[12] H. Gupta, On m-ary partitions, Proc. Cambridge Philos. Soc. 71 (1972), 343-345.
[13] Q. L. Lu, On a restricted m-ary partition function, Discrete Math. 275 (2004), no. 1-3, 347-353.
[14] B. Reznick, Some binary partition functions, Analytic number theory (Allerton Park, IL, 1989), 451-477, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.
[15] Ø. Rødseth, Some arithmetical properties of m-ary partitions, Proc. Cambridge Philos. Soc. 68 (1970), 447-453.
[16] \varnothing. Rødseth and J. A. Sellers, On m-ary partition function congruences: a fresh look at a past problem, J. Number Theory 87 (2001), no. 2, 270-281.
[17] - On m-ary overpartitions, Ann. Comb. 9 (2005), no. 3, 345-353.
Jiae Eom
Department of Mathematics
Yonsei University
Seoul 03722, Korea
E-mail address: sky911@yonsei.ac.kr
Gyeonga Jeong
Department of Mathematics
Yonsei University
Seoul 03722, Korea
E-mail address: provethat@yonsei.ac.kr
Jaebum Sohn
Department of Mathematics
Yonsei University
Seoul 03722, Korea
E-mail address: jsohn@yonsei.ac.kr

[^0]: Received December 18, 2015; Revised January 26, 2016.
 2010 Mathematics Subject Classification. Primary 05A17, 11P81.
 Key words and phrases. hyper m-ary partition function, hyper m-ary tree.
 Third author's research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2011-0011257).

