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RIGIDITY OF IMMERSED SUBMANIFOLDS IN A

HYPERBOLIC SPACE

Nguyen Thac Dung

Abstract. Let Mn, 2 ≤ n ≤ 6 be a complete noncompact hypersur-
face immersed in H

n+1. We show that there exist two certain positive
constants 0 < δ ≤ 1, and β depending only on δ and the first eigenvalue
λ1(M) of Laplacian such that if M satisfies a (δ-SC) condition and λ1(M)
has a lower bound then H1(L2(M)) = 0. Excepting these two conditions,
there is no more additional condition on the curvature.

1. Introduction

It is well-known that the structures of ends or the number of ends of a
noncompact immersed submanifold in a Riemannian manifold is related to the
space of bounded harmonic functions with finite energy (see [1, 11, 12]). In
fact, Li and Tam, in [11], proved that the number of non-parabolic ends of any
complete Riemannian manifold is bounded by the dimension of H1(L2(M)),
here we denote by H1(L2(M)) the space of bounded harmonic functions with
finite energy. Due to their result, if the space H1(L2(M)) is trivial, then the
submanifold has at most one non-parabolic end. Therefore, it is very interesting
to study vanishing property of H1(L2(M)). There are several work have been
done in this direction. For example, in [13], Lei Ni proved that if Mn, n ≥ 3 is a
complete minimal immersed hypersurface in R

n+1, then M does not admit any
non-trivial L2 harmonic one-form, consequently, M has only one end. When
the ambient space N is a hyperbolic space, Seo [14] proved that there are non
L2 harmonic one form on a complete super stable minimal hypersurface in a
hyperbolic space if the first eigenvalue λ1(M) of Laplacian is bounded from
below by a certain positive number depending only on the dimension of M .
Later, Fu and Yang [7] improved the result of Seo by giving a better lower bound
of λ1(M). Recently, in [9], Kim and Yun studied complete oriented noncompact
hypersurface Mn in a complete Riemannian manifold of nonnegative sectional
curvature. They defined a (SC) condition on M and proved that if M satisfies
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the (SC) condition and 2 ≤ n ≤ 4, then there is no non-trivial L2 harmonic one
forms on M . It is important to note that in [9], the authors did not assume the
minimality of such a hypersurface nor the constant mean curvature condition.
Finally, in [5], Seo and the author investigate complete hypersurfaces immersed
in R

n+1 and improve the results in [9].
In this paper, motivated by [5, 9], we consider a complete noncompact im-

mersed hypersurface in a hyperbolic space. We will not require the minimality
of such a hypersurface nor the constant mean curvature condition in our re-
search. Now, in order to establish our result, first we give a definition. Let Mn

be an immersed hypersuface in H
n+1. For a constant 0 < δ ≤ 1, we say that

M satisfies the (δ-SC) condition if for any function φ ∈ C1
0(M)

(1.1) δ

∫

M

(−n+ |A|2)φ2 ≤

∫

M

|∇φ|2,

where A is the second fundamental form of M . Note that if δ = 1, then the
condition (1.1) means the index of the operator ∆ + (−n + |A|2) is zero (see
[7]). In this case, we also say that M satisfies a (SC) condition or M is stable.
Now, we state our main theorem.

Theorem 1.1. Let 2 ≤ n ≤ 6. Let Mn be a complete hypersurface immersed

in a hyperbolic space H
n+1. Suppose that M satisfies (SC) condition and

λ1(M) >
2n− (n− 1)3/2

(n+ 2
√
n− 1)(n− 1)3/2

,

then H
1(L2(M)) = 0 and M has at most one nonparabolic end.

The paper is organized as follows. In Section 2, we introduce an auxiliary
lemma. Then, we prove the main Theorem 1.1. Finally, in Section 3, we give
a sufficient condition to ensure a δ-SC property on immersed hypersurfaces.

2. Immersed submanifolds with positive spectrum

In this section, we will consider a complete hypersurface of lower dimension
immersed in a hyperbolic space. To begin with, we first prove the following
lemma.

Lemma 2.1. Let Mn be a complete immersed submanifold in H
n+p. Then

(2.1) RicM ≥ −(n− 1)−

√
n− 1

2
|A|2.

Proof. By [10], it is well-known that

RicM ≥− (n− 1)−
n− 1

n
|A|2

+
1

n2

{
2(n− 1)|H |2 − (n− 2)

√
n− 1|H |

√
n|A|2 − |H |2

}
.(2.2)



RIGIDITY OF IMMERSED SUBMANIFOLDS IN A HYPERBOLIC SPACE 1797

Claim: If b := (n−2)2
√
n−1

2n(
√
n−1+1)2

. Then we have

(2.3) 2(n− 1)|H |2 − (n− 2)
√
n− 1|H |

√
n|A|2 − |H |2 ≥ −bn2|A|2.

Suppose that the claim is proved, then by (2.2), we have

RicM ≥ −(n− 1)−

{
(n− 2)2

√
n− 1

2n(
√
n− 1 + 1)2

+
n− 1

n

}
|A|2

= −(n− 1)−

√
n− 1

2
|A|2.

Hence, we have proven the conclusion of Lemma 2.1. The rest of this part
is to verify the above Claim. Indeed, If |A| = 0, then H = 0, here we used
|H |2 ≤ n|A|2. Thus the inequality (2.3) is trivial. Now we assume that |A| > 0.
The inequality (2.3) is equivalent to

(n− 2)
√
n− 1

n2

|H |

|A|

√
n−

|H |2

|A|2
−

2(n− 1)

n2

|H |2

|A|2
≤ b.

We define fn(t) on [0,
√
n] by

fn(t) =
(n− 2)

√
n− 1

n2
t
√
n− t2 −

2(n− 1)

n2
t2.

Suppose that there is a constant B > 0 such that B ≥ max
[0,

√
n]
fn(t). Then

(n− 2)
√
n− 1t

√
n− t2 ≤ 2(n− 1)t2 +Bn2, ∀t ∈ [0,

√
n]

or equivalently,

(2.4) (n− 2)2(n− 1)x(n− x) ≤ 4(n− 1)2x2 + 4B(n− 1)n2x+B2n4,

where x := t2 for all x ∈ [0, n]. A simple computation shows that the inequality
(2.4) holds true if

B ≥
(n− 2)2

√
n− 1

2n(
√
n− 1 + 1)2

.

Now, choose b = (n−2)2
√
n−1

2n(
√
n−1+1)2

. The claim is proved. Thus, the proof is complete.

�

We have the following vanishing theorem.

Theorem 2.2. Let 2 ≤ n ≤ 6. Let Mn be a complete hypersurface immersed

in a hyperbolic space H
n+1. Suppose that M satisfies (δ-SC) condition for some

n−2
2
√
n−1

< δ ≤ 1, if the first eigenvalue of M has lower bound

λ1 = λ1(M) ≥ (
√
n− 1 + 1)2

(
2
√
n− 1

n− 2
−

1

δ

)−1

,
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then any harmonic one-form ω on M is trivial, provided that
∫

B(R)

|ω|2β < o(R2),

where β is a constant satisfying

1−
√
1−D n−2

n−1

D
< β <

1 +
√
1−D n−2

n−1

D

and

D =

√
n− 1

2δ
+

1

λ1

(
n
√
n− 1

2
+ (n− 1)

)
.

Proof. We use the method in [7]. Let ω be a harmonic 1-form as in Theorem
2.2. The Bochner formula and the refine Kato’s identity imply

|ω|∆|ω| ≥
1

n− 1
|∇|ω||2 +RicM (ω, ω).

By Lemma 2.1, this shows that

|ω|∆|ω| ≥
1

n− 1
|∇|ω||2 − (n− 1)|ω|2 −

√
n− 1

2
|A|2|ω|2.

Now, for any α > 0, we have

|ω|α∆|ω|α = |ω|α
(
α(α− 1)|ω|α−2|∇|ω||2 + α|ω|α−1∆|ω|

)

=
α− 1

α
|∇|ω|α|2 + α|ω|2α−2|ω|∆|ω|

≥
α− 1

α
|∇|ω|α|2 + α|ω|2α−2

(
1

n− 1
|∇|ω||2 − (n− 1)|ω|2

−

√
n− 1

2
|A|2|ω|2

)

≥

(
1−

(n− 2)

(n− 1)α

)
|∇|ω|α|2 − α(n− 1)|ω|2α − α

√
n− 1

2
|A|2|ω|2α.(2.5)

Let q ≥ 0 and φ ∈ C∞
0 (M). Multiplying both sides of (2.5) by |ω|2qαφ2 then

integrating over M , we obtain
(
1−

n− 2

(n− 1)α

)∫

M

|ω|2qαφ2|∇|ω|α|2

≤

∫

M

|ω|(2q+1)αφ2∆|ω|α + α(n− 1)

∫

M

|ω|2(1+q)αφ2

+ α

√
n− 1

2

∫

M

|A|2φ2|ω|2(q+1)α

= α(n− 1)

∫

M

|ω|2(1+q)αφ2 + α

√
n− 1

2

∫

M

|A|2φ2|ω|2(q+1)α
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− (2q + 1)

∫

M

|ω|2qα|∇|ω|α|2φ2 − 2

∫

M

φ|ω|(2q+1)α 〈∇φ,∇|ω|α〉 .

Hence,
(
2(q + 1)−

n− 2

(n− 1)α

)∫

M

|ω|2qαφ2|∇|ω|α|2

≤ α(n− 1)

∫

M

|ω|2(1+q)αφ2 + α

√
n− 1

2

∫

M

|A|2φ2|ω|2(q+1)α

− 2

∫

M

φ|ω|(2q+1)α 〈∇φ,∇|ω|α〉 .(2.6)

On the other hand, since M satisfies the (δ-SC) condition and H
n+1 has non-

negative constant sectional curvature, we have for any φ ∈ C∞
0 (M)

∫

M

|∇φ|2 ≥ δ

∫

M

(−n+ |A|2)φ2.

Replacing φ by |ω|(q+1)αφ in the above inequality, we obtain

(2.7) δ

∫

M

|ω|2(q+1)α|A|2φ2 ≤

∫

M

|∇(|ω|(q+1)αφ)|2 + nδ

∫

M

|ω|2(q+1)αφ2.

Combining (2.6) and (2.7), we infer
(
2(q + 1)−

n− 2

(n− 1)α

)∫

M

|ω|2qαφ2|∇|ω|α|2

≤
α
√
n− 1

2δ

∫

M

|∇(|ω|(q+1)αφ)|2 − 2

∫

M

φ|ω|(2q+1)α 〈∇φ,∇|ω|α〉 .

+ α

{
n
√
n− 1

2
+ n− 1

}∫

M

|ω|2(q+1)αφ2.(2.8)

Moreover, by variational characterization of λ1, we have

(2.9)

∫

M

|ω|2(q+1)αφ2 ≤
1

λ1

∫

M

|∇(|ω|(q+1)αφ)|2.

Hence, (2.8) implies
(
2(q + 1)−

n− 2

(n− 1)α

)∫

M

|ω|2qαφ2|∇|ω|α|2

≤

{
α
√
n− 1

2δ
+

α

λ1

(
n
√
n− 1

2
+ n− 1

)}∫

M

|∇(|ω|(q+1)αφ)|2

− 2

∫

M

φ|ω|(2q+1)α 〈∇φ,∇|ω|α〉

or equivalently,
(
2(q + 1)−

n− 2

(n− 1)α

)∫

M

|ω|2qαφ2|∇|ω|α|2
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≤ Dα(q + 1)2
∫

M

|ω|2qα|∇|ω|α|2φ2 +Dα

∫

M

|ω|2(q+1)α|∇φ|2

+
(
Dα(q + 1)− 1

)∫

M

2|ω|(2q+1)αφ 〈∇φ,∇|ω|α〉 .(2.10)

For any ε > 0, the Schwarz inequality implies
(
Dα(q + 1)− 1

)∫

M

2|ω|(2q+1)αφ 〈∇φ,∇|ω|α〉

≤ |1−Dα(q + 1)|

∫

M

2|ω|(2q+1)α|φ|.|∇φ|.|∇|ω|α|

≤ |1−Dα(q + 1)|

(
ε

∫

M

|ω|2qα|∇|ω|α|2φ2 +
1

ε

∫

M

|ω|2(q+1)α|∇φ|2
)
.(2.11)

From (2.10) and (2.11), we conclude that

{
2(q + 1)−

n−2

(n−1)α
−Dα(q + 1)2 − |1−Dα(q + 1)|ε

}∫

M

φ2|ω|2qα|∇|ω|α|2

(2.12)

≤

{
Dα+

|1−Dα(q + 1)|

ε

}∫

M

|ω|2(q+1)α|∇φ|2.

Now, choose α, q such that

2(q + 1)−
n− 2

(n− 1)α
−Dα(q + 1)2 > 0.

Then, from (2.12), we see that if ε > 0 is small enough, then there exists a
positive constant C depending on ε, q, α, δ, λ1 such that

(2.13)

∫

M

|ω|2qα|∇|ω|α|2φ2 ≤ C

∫

M

|ω|2(q+1)α|∇φ|2,

provided that

(2.14) 2(q + 1)−
n− 2

(n− 1)α
−Dα(q + 1)2 > 0.

Let β = (q + 1)α, it is easy to see that (2.14) is equivalent to

2β −
n− 2

n− 1
−Dβ2 > 0.

This inequality is always satisfied by the assumptions

1−
√
1−D n−2

n−1

D
< β <

1 +
√
1−D n−2

n−1

D
.

Now, let φ be a smooth function on [0,∞) such that φ ≥ 0, φ = 1 on [0, R] and
φ = 0 in [2R,∞) with |φ′| ≤ 2

R
, then considering φ ◦ r, where r is the function

in the definition of B(R), we obtain from (2.13)
∫

B(R)

|ω|2qα|∇|ω|α|2 ≤
4C

R2

∫

M

|ω|2β.
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Let R → ∞, by the assumption
∫
B(R) |ω|

2β = 0(R2) we have that |ω| is con-

stant. By (2.9), we obtain

|ω|2β
∫

M

φ2 ≤
4

λ1R2

∫

M

|ω|2β .

Let R → ∞ again, we conclude that |ω| = 0. Hence, ω is trivial. The proof is
finished. �

Now, we will give a proof of Theorem 1.1.

Proof of Theorem 1.1. Since M satisfies the (SC) condition, δ = 1. Hence, we
can repeat the proof of Theorem 2.2, to obtain H1(L2β(M)) = 0, provided that

1−
√
1−D n−2

n−1

D
< β <

1 +
√
1−D n−2

n−1

D
,

where

D =

√
n− 1

2
+

1

λ1

(
n
√
n− 1

2
+ (n− 1)

)
.

Note that the vanishing property ofH1(L2(M)) can be verified if we can choose
β = 1. In fact, by above inequalities, it is sufficient to show that

|1−D| <

√
1−D

n− 2

n− 1
,

namely, D < n
n−1 . This is satisfied by the assumption

λ1(M) >
2n− (n− 1)3/2

(n+ 2
√
n− 1)(n− 1)3/2

.

The proof is complete. �

3. δ-stable condition

In this section, we give a sufficient condition for immersed hypersurfaces
to be satisfying the (δ-SC) condition. First, recall that we have the following
Sobolev type inequality proved by Hoffman and Spruck [8].

Lemma 3.1. Let Mn be a submanifold immersed in H
n+p. Then there exists

a positive constant C1 > 0 such that for any function φ ∈ C1
0(M), we have

(3.1)

(∫

M

|φ|
n

n−1

)n−1

n

≤ C1

(∫

M

|∇φ|+

∫

M

|Hφ|

)

Proof. See [8], Theorem 2.1. �

From Lemma 3.1, we have the following Sobolev inequality proved by Carron
[3] (also see [6]) and rigidity property of complete manifolds with finite total
mean curvature.
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Lemma 3.2. Let Mn, n ≥ 3 be an oriented complete sub-manifold immersed

in H
n+p. Suppose that ||H ||n =

∫
M

|H |n < ∞, then for any φ ∈ C1
0(M), we

have

(3.2)

(∫

M

|φ|
2n

n−2

)n−2

n

≤ Cs

∫

M

|∇φ|2,

where

Cs =

(
4C1(n− 1)

n− 2

)2

and C1 is the constant in Lemma 3.1. Moreover, each end of M must be non

parabolic.

Proof. The proof of the Lemma is given in [3] (see also [6]). For the complete-
ness, we include the detail here. By the assumption that

∫
M

|H |n < ∞, there
exists a compact subset D ⊂ M such that

(∫

M\D

|H |n
)1/n

≤
1

2C1
.

Let h ∈ C1
0(M), the Hölder inequality implies,

C1

∫

M\D

|Hh| ≤ C1

(∫

M\D

|H |n

)1/n(∫

M\D

|h|
n

n−1

)n−1

n

≤
1

2

(∫

M\D

|h|
n

n−1

)n−1

n

.

Hence, by (3.1), we have

(∫

M\D

|h|
n

n−1

)n−1

n

≤ 2C1

∫

M\D

|∇h|.

Now, replacing h by φ
2(n−1)

n−2 , we infer

(∫

M\D

|φ|
2n

n−2

)n−1

n

≤
4C1(n− 1)

n− 2

∫

M\D

∣∣φ n
n−2∇φ

∣∣

≤
4C1(n− 1)

n− 2

(∫

M\D

|φ|
2n

n−2

)1/2(∫

M\D

|∇φ|2

)1/2

.

Therefore,
(∫

M\D

|φ|
2n

n−2

)n−2

n

≤ Cs

∫

M\D

|∇φ|2
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for all φ ∈ C1
0(M \D). By [2] (also see [3]), we obtain the Sobolev inequality

(∫

M

|φ|
2n

n−2

)n−2

n

≤ Cs

∫

M

|∇φ|2

for all φ ∈ C1
0(M). By Theorem 2.4 and Proposition 2.5 in [6], each end of M

is non-parabolic. The proof is complete. �

Theorem 3.3. Let Mn be an immersed hypersurface in H
n, n ≥ 3. If ||A||n ≤

1
√
δCs

where Cs is the constant in Lemma 3.2, then M satisfies the (δ-SC)

condition.

Proof. We only need to show that, for any φ ∈ C1
0(M),

∫

M

(
|∇φ|2 − δ(−n+ |A|2)φ2

)
≥ 0.

By the assumption on the total scalar curvature, we have ||H ||n ≤
√
n||A||n <

∞, hence we can use the Sobolev inequality in Lemma 3.2 to get
∫

M

(
|∇φ|2 − δ(−n+ |A|2)φ2

)
≥

1

Cs

(∫

M

|φ|
2n

n−2

)n−2

n

− δ

∫

M

|A|2φ2.

Moreover, Hölder inequality implies
∫

M

|A|2φ2 ≤

(∫

M

|A|n
) 2

n
(∫

M

φ
2n

n−2

)n−2

n

.

Combining above two inequalities, we obtain
∫

M

(
|∇φ|2 − δ(−n+ |A|2)φ2

)
≥

{
1

Cs

− δ

(∫

M

|A|n
) 2

n

}(∫

M

|φ|
2n

n−2

)n−2

n

≥ 0

here we used ||A||n ≤ 1
√
δCs

. The proof is complete. �
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