Bull. Korean Math. Soc. ${\bf 53}$ (2016), No. 6, pp. 1771–1783 http://dx.doi.org/10.4134/BKMS.b150972 pISSN: 1015-8634 / eISSN: 2234-3016

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A NON-METRIC ϕ -SYMMETRIC CONNECTION

Dae Ho Jin

ABSTRACT. We study lightlike hypersurfaces M of an indefinite trans-Sasakian manifold \overline{M} with a non-metric ϕ -symmetric connection. We characterize the geometry of lightlike hypersurfaces of such a \overline{M} .

1. Introduction

The notion of non-metric ϕ -symmetric connection was introduced by Jin [8]. Semi-symmetric non-metric connection [1] and quarter-symmetric non-metric connection [2] are two impotent examples of this connection. It is defined as follow: An affine connection $\bar{\nabla}$ on a semi-Riemannian manifold (\bar{M}, \bar{g}) is called a *non-metric* ϕ -symmetric connection if it and its torsion tensor \bar{T} satisfy

(1.1)
$$(\nabla_X \bar{g})(Y, Z) = -\theta(Y)\phi(X, Z) - \theta(Z)\phi(X, Y),$$

(1.2) $\overline{T}(X,Y) = \theta(Y)JX - \theta(X)JY,$

for any vector fields X, Y and Z on \overline{M} , where ϕ and J are tensor fields of types (0, 2) and (1, 1) respectively, and θ is a 1-form on \overline{M} .

The objective of this paper is to study the geometry of lightlike hypersurfaces of an indefinite trans-Sasakian manifold \overline{M} with a non-metric ϕ -symmetric connection, in which the tensor field J in (1.2) is identical with the indefinite almost contact structure tensor J of \overline{M} , the tensor field ϕ in (1.1) is identical with the fundamental 2-form associated with the tensor field J, *i.e.*,

(1.3)
$$\phi(X,Y) = \bar{g}(JX,Y),$$

and the 1-form θ , defined by (1.1) and (1.2), is identical with the structure 1-form θ of the indefinite almost contact structure $(J, \zeta, \theta, \bar{g})$ of \bar{M} .

Denote $\widetilde{\nabla}$ by the unique Levi-Civita connection of a semi-Riemannian manifold $(\overline{M}, \overline{g})$ with respect to the metric \overline{g} . It is known [8] that a linear connection

O2016Korean Mathematical Society

Received November 25, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.

Key words and phrases. non-metric $\phi\mbox{-symmetric}$ connection, lightlike hypersurface, indefinite trans-Sasakian manifold.

 $\overline{\nabla}$ on \overline{M} is non-metric ϕ -symmetric connection if and only if it satisfies

(1.4)
$$\overline{\nabla}_X Y = \nabla_X Y + \theta(Y) J X$$

In this paper, by saying that non-metric ϕ -symmetric connection we shall mean the non-metric ϕ -symmetric connection defined by (1.4).

2. Lightlike hypersurfaces

An odd-dimensional semi-Riemannian manifold $(\overline{M}, \overline{g})$ is called an *indefinite* almost contact metric manifold if there exist a (1, 1)-type tensor field J, a vector field ζ which is called the structure vector field, and a 1-form θ such that

(2.1)
$$J^2X = -X + \theta(X)\zeta, \ \bar{g}(JX, JY) = \bar{g}(X, Y) - \epsilon\theta(X)\theta(Y), \ \theta(\zeta) = 1,$$

for any vector fields X and Y on \overline{M} , where $\epsilon = 1$ or -1 according as ζ is spacelike or timelike, respectively. The set $\{J, \zeta, \theta, \overline{g}\}$ is called an *indefinite* almost contact metric structure of \overline{M} . From (2.1), we show that

$$J\zeta = 0, \quad \theta \circ J = 0, \quad \theta(X) = \epsilon \bar{g}(X,\zeta), \quad \bar{g}(JX,Y) = -\bar{g}(X,JY).$$

In the entire discussion of this article, we shall assume that the structure vector field ζ is a spacelike one, *i.e.*, $\epsilon = 1$, without loss of generality.

Definition. An indefinite almost contact metric manifold $(\overline{M}, \overline{g})$ is said to be an *indefinite trans-Sasakian manifold* if, for any vector fields X and Y on \overline{M} , there exist two smooth functions α and β such that

$$(\widetilde{\nabla}_X J)Y = \alpha \{ \bar{g}(X, Y)\zeta - \theta(Y)X \} + \beta \{ \bar{g}(JX, Y)\zeta - \theta(Y)JX \}.$$

We say that $\{J, \zeta, \theta, \overline{g}\}$ is an *indefinite trans-Sasakian structure of type* (α, β) .

The notion of indefinite trans-Sasakian manifold was introduced by Oubina [9]. Indefinite Sasakian, Kenmotsu and cosymplectic manifolds are important kinds of indefinite trans-Sasakian manifold such that

 $\alpha = 1, \ \beta = 0; \ \alpha = 0, \ \beta = 1; \ \alpha = \beta = 0,$ respectively. By directed calculation from (1.4), we obtain the following relation:

$$(\bar{\nabla}_X J)Y = (\bar{\nabla}_X J)Y + \theta(Y)\{X - \theta(X)\zeta\}.$$

Thus, replacing the Levi-Civita connection $\overline{\nabla}$ by the non-metric ϕ -symmetric connection $\overline{\nabla}$, the equation in the above Definition is reformed to

(2.2)
$$(\bar{\nabla}_X J)Y = \alpha \{ \bar{g}(X, Y)\zeta - \theta(Y)X \} + \beta \{ \bar{g}(JX, Y)\zeta - \theta(Y)JX \} + \theta(Y) \{ X - \theta(X)\zeta \}.$$

Replacing Y by ζ to (2.2) and using $J\zeta = 0$ and $\theta(\bar{\nabla}_X \zeta) = 0$, we obtain

(2.3)
$$\bar{\nabla}_X \zeta = -(\alpha - 1)JX + \beta(X - \theta(X)\zeta).$$

Let (M, g) be a lightlike hypersurface of $(\overline{M}, \overline{g})$. Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of a vector bundle E over M. Also denote by $(2.1)_i$ the *i*-th equation of the three equations in (2.1). We use same notations for any others. It is known [5] that

the normal bundle TM^{\perp} of M is a vector subbundle of the tangent bundle TM, of rank 1, and coincides with the radical distribution $Rad(TM) = TM \cap TM^{\perp}$. A complementary vector bundle S(TM) of TM^{\perp} in TM is non-degenerate distribution on M, which is called a *screen distribution* on M, such that

$$TM = TM^{\perp} \oplus_{orth} S(TM)$$

where \oplus_{orth} denotes the orthogonal direct sum. For any null section ξ of TM^{\perp} on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique null section N of a unique vector bundle tr(TM) in $S(TM)^{\perp}$ satisfying

$$\bar{g}(\xi, N) = 1, \quad \bar{g}(N, N) = \bar{g}(N, X) = 0, \quad \forall X \in \Gamma(S(TM)).$$

We call tr(TM) and N the transversal vector bundle and the null transversal vector field of M with respect to the screen distribution S(TM) respectively. The tangent bundle $T\overline{M}$ of \overline{M} is decomposed as follow:

$$T\overline{M} = TM \oplus tr(TM) = \{TM^{\perp} \oplus tr(TM)\} \oplus_{orth} S(TM).$$

In the sequel, let X, Y, Z and W be the vector fields on M, unless otherwise specified. Let P be the projection morphism of TM on S(TM). Then the local Gauss and Weingarten formulas of M and S(TM) are given respectively by

(2.4)
$$\bar{\nabla}_X Y = \nabla_X Y + B(X, Y)N$$

(2.5)
$$\bar{\nabla}_X N = -A_N X + \tau(X)N,$$

(2.6)
$$\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,$$

(2.7)
$$\nabla_X \xi = -A_{\xi}^* X - \sigma(X)\xi,$$

where ∇ and ∇^* are the induced linear connections on M and S(TM) respectively, B and C are the local second fundamental forms on M and S(TM) respectively, A_N and A_{ξ}^* are the shape operators on M and S(TM) respectively, and τ and σ are 1-forms on M.

Due to [6], it is known that, for any lightlike hypersurface M of an indefinite almost contact manifold \overline{M} , $J(TM^{\perp})$ and J(tr(TM)) are vector subbundles of S(TM), of rank 1. In the following, we shall assume that ζ is tangent to M. Călin [4] proved that if ζ is tangent to M, then it belongs to S(TM). In this case, there exists two non-degenerate almost complex distributions D_o and Dwith respect to J, *i.e.*, $J(D_o) = D_o$ and J(D) = D, such that

$$S(TM) = J(TM^{\perp}) \oplus J(tr(TM)) \oplus_{orth} D_o,$$

$$D = TM^{\perp} \oplus_{orth} J(TM^{\perp}) \oplus_{orth} D_o,$$

$$TM = D \oplus J(tr(TM)).$$

Consider two null vector fields U and V and their 1-forms u and v such that

(2.8)
$$U = -JN, \quad V = -J\xi, \quad u(X) = g(X,V), \quad v(X) = g(X,U).$$

Denote by S the projection morphism of TM on D. Any vector field X of M is expressed as X = SX + u(X)U. Applying J to this form, we have

$$(2.9) JX = FX + u(X)N,$$

where F is a tensor field of type (1, 1) globally defined on M by FX = JSX. Applying J to (2.9) and using $(2.1)_1$ and (2.8), we have

(2.10)
$$F^2 X = -X + u(X)U + \theta(X)\zeta.$$

Denote by \overline{R} , R and R^* the curvature tensors of the non-metric ϕ -symmetric connection $\overline{\nabla}$ on \overline{M} , and the induced linear connections ∇ and ∇^* on M and S(TM) respectively. Using the Gauss-Weingarten formulas, we obtain two Gauss-Codazzi equations for M and S(TM) such that

$$\begin{array}{l} (2.11) \ R(X,Y)Z = R(X,Y)Z + B(X,Z)A_{N}Y - B(Y,Z)A_{N}X \\ & + \{(\nabla_{X}B)(Y,Z) - (\nabla_{Y}B)(X,Z) + \tau(X)B(Y,Z) \\ & - \tau(Y)B(X,Z) + B(T(X,Y),Z)\}N, \\ (2.12) \ \bar{R}(X,Y)N = -\nabla_{X}(A_{N}Y) + \nabla_{Y}(A_{N}X) + A_{N}[X,Y] \\ & + \tau(X)A_{N}Y - \tau(Y)A_{N}X \\ & + \{B(Y,A_{N}X) - B(X,A_{N}Y) + 2d\tau(X,Y)\}N, \\ (2.13) \ R(X,Y)PZ = R^{*}(X,Y)PZ + C(X,PZ)A_{\xi}^{*}Y - C(Y,PZ)A_{\xi}^{*}X \\ & + \{(\nabla_{X}C)(Y,PZ) - (\nabla_{Y}C)(X,PZ) - \sigma(X)C(Y,PZ) \\ & + \sigma(Y)C(X,PZ) + C(T(X,Y),PZ)\}\xi, \\ (2.14) \ R(X,Y)\xi = -\nabla_{X}^{*}(A_{\xi}^{*}Y) + \nabla_{Y}^{*}(A_{\xi}^{*}X) + A_{\xi}^{*}[X,Y] \\ & - \sigma(X)A_{\xi}^{*}Y + \sigma(Y)A_{\xi}^{*}X \\ & + \{C(Y,A_{\xi}^{*}X) - C(X,A_{\xi}^{*}Y) - 2d\sigma(X,Y)\}\xi. \end{array}$$

3. Non-metric ϕ -symmetric connections

Let $(\overline{M}, \overline{g})$ be an indefinite trans-Sasakian manifold with a non-metric ϕ -symmetric connection $\overline{\nabla}$. Using (1.1), (1.2), (1.3), (2.4) and (2.9), we obtain

(3.1)
$$(\nabla_X g)(Y, Z) = B(X, Y)\eta(Z) + B(X, Z)\eta(Y) - \theta(Y)\phi(X, Z) - \theta(Z)\phi(X, Y),$$

(3.2)
$$T(X,Y) = \theta(Y)FX - \theta(X)FY,$$

(3.3)
$$B(X,Y) - B(Y,X) = \theta(Y)u(X) - \theta(X)u(Y),$$

(3.4)
$$\phi(X,\xi) = u(X), \qquad \phi(X,N) = v(X), \\ \phi(X,V) = 0, \qquad \phi(X,U) = -\eta(X),$$

where T is the torsion tensor with respect to ∇ and η is a 1-form such that

$$\eta(X) = \bar{g}(X, N).$$

From the fact that $B(X,Y) = \overline{g}(\overline{\nabla}_X Y,\xi)$, we know that B is independent of the choice of the screen distribution S(TM) and satisfies

(3.5)
$$B(X,\xi) = B(\xi,X) = 0$$

The local second fundamental forms are related to their shape operators by

(3.6)
$$B(X,Y) = g(A_{\xi}^*X,Y) + \theta(Y)u(X), \qquad \bar{g}(A_{\xi}^*X,N) = 0,$$

$$(3.7) C(X, PY) = g(A_N X, PY) + \theta(PY)v(X), \quad \bar{g}(A_N X, N) = 0,$$

and $\tau = \sigma$. From (2.3), (2.6), (3.5) and the fact that $\tau = \sigma$, we obtain

(3.8)
$$\bar{\nabla}_X \xi = -A^*_{\xi} X - \tau(X)\xi.$$

Applying $\overline{\nabla}_X$ to $\overline{g}(\zeta, N) = 0$ and using (1.1), (2.3), (2.5) and (3.4)₂, we have

(3.9)
$$g(A_N X, \zeta) = -\alpha v(X) + \beta \eta(X).$$

Theorem 3.1. Let M be a lightlike hypersurface of an indefinite trans-Sasakian manifold \overline{M} with a non-metric ϕ -symmetric connection. Then $\beta = 0$.

Proof. Taking X = U and $X = \xi$ to (3.9) by turns, we obtain

(3.10)
$$\theta(A_N U) = 0, \qquad \theta(A_N \xi) = \beta.$$

From the Gauss equation (2.11) and (3.5), we see that

$$-\bar{g}(\bar{R}(X,Y)N,\xi) = \bar{g}(\bar{R}(X,Y)\xi,N) = \bar{g}(R(X,Y)N,\xi).$$

From this equation, (2.12), (2.14) and the fact that $\tau = \sigma$, we obtain

$$B(Y, A_N X) - B(X, A_N Y) = C(X, A_{\varepsilon}^* Y) - C(Y, A_{\varepsilon}^* X).$$

Using this equation, (3.6) and (3.7), we obtain

$$\theta(A_{\scriptscriptstyle N}X)u(Y) - \theta(A_{\scriptscriptstyle N}Y)u(X) = \theta(A_{\scriptscriptstyle {\mathcal E}}^*Y)v(X) - \theta(A_{\scriptscriptstyle {\mathcal E}}^*X)v(Y).$$

Replacing Y by U to this equation and using $(3.10)_1$, we have

$$\theta(A_{N}X) = \theta(A_{\xi}^{*}U)v(X).$$

Taking $X = \xi$, we get $\theta(A_N \xi) = 0$. From this and $(3.10)_2$, we get $\beta = 0$.

Corollary 3.2. There exist no lightlike hypersurfaces of an indefinite Kenmotsu manifold with a non-metric ϕ -symmetric connection.

Applying ∇_X to (2.8) and (2.9) and using (2.2), (2.4), (2.5), (2.8), (2.9), (3.1), (3.4)_4, (3.7), (3.8) and the fact that $\beta = 0$, we have

- (3.11) B(X, U) = C(X, V),
- (3.12) $\nabla_X U = F(A_N X) + \tau(X)U \alpha \eta(X)\zeta,$
- (3.13) $\nabla_X V = F(A_{\xi}^* X) \tau(X)V,$

(3.14)
$$(\nabla_X F)(Y) = u(Y)A_N X - B(X,Y)U - (\alpha - 1)\theta(Y)X + \{\alpha g(X,Y) - \theta(X)\theta(Y)\}\zeta,$$

 $(3.15) \qquad (\nabla_X u)(Y) = -u(Y)\tau(X) - B(X, FY),$

$$(3.16) \qquad (\nabla_X v)(Y) = v(Y)\tau(X) - g(A_N X, FY) - (\alpha - 1)\theta(Y)\eta(X).$$

From (3.7), we show that (3.9) satisfying $\beta = 0$ is equivalent to

$$(3.17) C(X,\zeta) = -(\alpha - 1)v(X)$$

Substituting (2.9) into (2.3) such that $\beta = 0$ and using (2.4), we have

(3.18) $\nabla_X \zeta = -(\alpha - 1)FX, \qquad B(X, \zeta) = -(\alpha - 1)u(X).$

4. Recurrent and Lie recurrent lightlike hypersurfaces

Definition. The structure tensor field F of M is said to be *recurrent* [7] if there exists a 1-form ϖ on M such that

$$(\nabla_X F)Y = \varpi(X)FY.$$

A lightlike hypersurface M of an indefinite Kaehler manifold \overline{M} is called *recurrent* if it admits a recurrent structure tensor field F.

Theorem 4.1. There exist no recurrent lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a non-metric ϕ -symmetric connection.

Proof. If M is recurrent, then, from the above definition and (3.14), we get

(4.1)
$$\varpi(X)FY = u(Y)A_NX - B(X,Y)U - (\alpha - 1)\theta(Y)X + \{\alpha g(X,Y) - \theta(X)\theta(Y)\}\zeta.$$

Replacing Y by ξ to this equation and using (3.5) and the fact that $F\xi = -V$, we get $-\varpi(X)V = 0$. Taking the scalar product with U to this result, we obtain $\varpi = 0$. It follows that F is parallel with respect to the connection ∇ .

Taking $Y = \zeta$ to (4.1) and using (3.18)₂, we get

$$(\alpha - 1)\{-X + u(X)U + \theta(X)\zeta\} = 0.$$

It follows that $\alpha = 1$. Thus \overline{M} is an indefinite Sasakian manifold.

Taking the scalar product with ζ to (4.1) and using (3.9), we get

$$g(X,Y) - \theta(X)\theta(Y) - v(X)u(Y) = 0.$$

Taking the skew-symmetric part of this equation, we obtain

$$u(X)v(Y) - u(Y)v(X) = 0.$$

Taking X = U and Y = V to this result, we have 1 = 0. It is a contradiction. Thus we have our theorem.

Corollary 4.2. There exist no lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a non-metric ϕ -symmetric connection such that the structure tensor field F is parallel with respect to the connection ∇ of M.

Definition. The structure tensor field F of M is said to be *Lie recurrent* [7] if there exists a 1-form ϑ on M such that

$$(\mathcal{L}_X F)Y = \vartheta(X)FY,$$

where \mathcal{L}_{X} denotes the Lie derivative on M with respect to X, that is,

$$(\mathcal{L}_X F)Y = [X, FY] - F[X, Y].$$

The structure tensor field F is called *Lie parallel* if $\mathcal{L}_{X}F = 0$. A lightlike hypersurface M of an indefinite Kaehler manifold \overline{M} is called *Lie recurrent* if it admits a Lie recurrent structure tensor field F.

Theorem 4.3. Let M be a Lie recurrent lightlike hypersurface of an indefinite Kaehler manifold \overline{M} with a non-metric ϕ -symmetric connection. Then

- (1) F is Lie parallel,
- (2) $\alpha = 0$, *i.e.*, \overline{M} is an indefinite cosymplectic manifold,

(3) the 1-form τ satisfies $\tau = 0$.

Proof. (1) Using the above definition, (2.10), (3.2) and (3.14), we get

(4.2)
$$\vartheta(X)FY = -\nabla_{FY}X + F\nabla_YX + u(Y)A_NX - \{B(X,Y) - \theta(Y)u(X)\}U + \alpha\{g(X,Y)\zeta - \theta(Y)X\}.$$

Taking $Y = \xi$ to (4.2) and using (2.9), we have

(4.3)
$$-\vartheta(X)V = \nabla_V X + F \nabla_{\xi} X.$$

Taking the scalar product with V and ζ to (4.3) by turns, we have

(4.4) $u(\nabla_V X) = 0, \qquad \theta(\nabla_V X) = 0.$

Replacing Y by V to (4.2) and using the fact that $\theta(V) = 0$, we have

$$\vartheta(X)\xi = -\nabla_{\xi}X + F\nabla_{V}X - B(X,V)U + \alpha u(X)\zeta.$$

Applying F to this equation and using (2.10) and (4.4), we obtain

$$\vartheta(X)V = \nabla_V X + F\nabla_\xi X$$

Comparing this equation with (4.3), we get $\vartheta = 0$. Thus F is Lie parallel. (2) Taking the scalar product with ζ to (4.2) and using (3.9), we have

$$-g(\nabla_{FY}X,\zeta) + \alpha\{g(X,Y) - v(X)u(Y) - \theta(X)\theta(Y)\} = 0.$$

Taking X = U to this equation and using (3.12) and the fact that $\eta(FY) = v(Y)$, we get $\alpha v(Y) = 0$. It follows that $\alpha = 0$.

(3) Taking the scalar product with N to (4.2) and using $(3.7)_2$, we have

(4.5)
$$-\bar{g}(\nabla_{FY}X,N) + \bar{g}(F\nabla_{Y}X,N) = 0$$

Replacing X by ξ to (4.5) and using (2.7), (2.8), (2.9) and (3.6), we have

(4.6)
$$B(X,U) = \tau(FX).$$

Replacing X by U to (4.6) and using (3.11) and the fact that FU = 0, we get (4.7) C(U, V) = B(U, U) = 0.

Replacing X by V to (4.5) and using (2.10), (3.6) and (3.13), we have

$$B(FY, U) = -\tau(Y).$$

Taking Y = U and $Y = \zeta$ and using the fact that $FU = F\zeta = 0$, we obtain (4.8) $\tau(U) = 0, \quad \tau(\zeta) = 0.$

(4.8)
$$\tau(U) = 0, \qquad \tau(\zeta) =$$

Replacing X by U to (4.2) and using (2.10), (3.3) and (3.9), we get

$$u(Y)A_{\scriptscriptstyle N}U - F(A_{\scriptscriptstyle N}FY) - A_{\scriptscriptstyle N}Y - \tau(FY)U = 0.$$

Taking the scalar product with V and using (3.7), (3.11) and (4.7), we get

$$B(X,U) = -\tau(FX)$$

Comparing this with (4.6), we obtain $\tau(FX) = 0$. Replacing X by FY to this result and using (3.9) and (4.8), we have $\tau = 0$.

Theorem 4.4. Let M be a lightlike hypersurface of an indefinite trans-Sasakian manifold \overline{M} with a non-metric ϕ -symmetric connection. If V or U is parallel with respect to the induced connection ∇ on M, then $\tau = 0$ and $\alpha = \beta = 0$, *i.e.*, \overline{M} is an indefinite cosymplectic manifold.

Proof. (1) If V is parallel with respect to ∇ , then, from (3.13), we have

$$F(A_{\varepsilon}^*X) - \tau(X)V = 0.$$

Taking the scalar product with U to this equation, we have $\tau = 0$. Applying F to the last equation and using (2.10), (3.6) and (3.18)₂, we obtain

$$A_{\xi}^*X = -\alpha u(X)\zeta + u(A_{\xi}^*X)U.$$

Taking the scalar product with U and using (3.6), we have B(X, U) = 0. Thus $B(\zeta, U) = 0$. Taking X = U and $Y = \zeta$ to (3.3), we get $B(U, \zeta) = 1$. On the other hand, replacing X by U to (3.18)₂, we have $B(U, \zeta) = -\alpha + 1$. From the above two results, we get $\alpha = 0$ and

(4.9)
$$A_{\varepsilon}^* X = u(A_{\varepsilon}^* X)U.$$

(2) If U is parallel with respect to ∇ , then, from (3.12), we have

$$F(A_{N}X) + \tau(X)U - \alpha\eta(X)\zeta = 0.$$

Taking the scalar product with ζ and V to this equation by turns, we get $\alpha = 0$ and $\tau = 0$ respectively. Applying F to the last equation and using (2.10), (3.9) and the fact that $\alpha = \beta = 0$, we obtain

As $\alpha = \beta = 0$ in (1) and (2), \overline{M} is an indefinite cosymplectic manifold.

5. Indefinite generalized Sasakian space forms

Definition. An indefinite trans-Sasakian manifold $(\overline{M}, J, \zeta, \theta, \overline{g})$ is called an *indefinite generalized Sasakian space form*, denote it by $\overline{M}(f_1, f_2, f_3)$, if there exist three smooth functions f_1 , f_2 and f_3 on \overline{M} such that

(5.1)
$$R(X,Y)Z = f_{1}\{\bar{g}(Y,Z)X - \bar{g}(X,Z)Y\}$$

+ $f_{2}\{\bar{g}(X,JZ)JY - \bar{g}(Y,JZ)JX + 2\bar{g}(X,JY)JZ\}$
+ $f_{3}\{\theta(X)\theta(Z)Y - \theta(Y)\theta(Z)X$
+ $\bar{g}(X,Z)\theta(Y)\zeta - \bar{g}(Y,Z)\theta(X)\zeta\}$

for any vector fields X, Y and Z on \overline{M} .

The generalized Sasakian space form $M(f_1, f_2, f_3)$ was introduced by Alegre *et al.* [3]. Sasakian, Kenmotsu and cosymplectic space forms are important kinds of indefinite generalized Sasakian space forms such that

$$f_1 = \frac{c+3}{4}, f_2 = f_3 = \frac{c-1}{4}; \quad f_1 = \frac{c-3}{4}, f_2 = f_3 = \frac{c+1}{4}; \quad f_1 = f_2 = f_3 = \frac{c}{4};$$

respectively, where c is a constant J-sectional curvature of each space forms. Comparing the transversal components of (2.11) and (5.1), we have

(5.2)
$$(\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) + \tau(X)B(Y,Z) - \tau(Y)B(X,Z) - \theta(X)B(FY,Z) + \theta(Y)B(FX,Z) = f_2\{u(Y)\bar{g}(X,JZ) - u(X)\bar{g}(Y,JZ) + 2u(Z)\bar{g}(X,JY)\}.$$

Taking the scalar product with N to (2.11) and using $(3.7)_2$, we have

$$\bar{g}(\bar{R}(X,Y)PZ,N) = \bar{g}(R(X,Y)PZ,N).$$

Substituting (2.13) and (5.1) into the last equation and using (3.2), we get

$$(5.3) \qquad (\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ) - \tau(X)C(Y, PZ) + \tau(Y)C(X, PZ) - \theta(X)C(FY, PZ) + \theta(Y)C(FX, PZ) = f_1\{g(Y, PZ)\eta(X) - g(X, PZ)\eta(Y)\} + f_2\{v(Y)\bar{g}(X, JPZ) - v(X)\bar{g}(Y, JPZ) + 2v(PZ)\bar{g}(X, JY)\} + f_3\{\theta(X)\eta(Y) - \theta(Y)\eta(X)\}\theta(PZ).$$

Theorem 5.1. Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form $\overline{M}(f_1, f_2, f_3)$ with a non-metric ϕ -symmetric connection. Then α is a constant, $\beta = 0$, and the functions f_1 , f_2 and f_3 are satisfied

$$f_2 = f_3 = f_1 - \alpha(\alpha - 1).$$

Proof. Applying ∇_Y to (3.11) and using (3.12), (3.13) and (3.18)₂, we get

$$\begin{aligned} (\nabla_X B)(Y,U) &= (\nabla_X C)(Y,V) \\ &\quad - 2\tau(X)C(Y,V) - \alpha(\alpha-1)u(Y)\eta(X) \\ &\quad - g(A_\xi^*X,F(A_NY)) - g(A_\xi^*Y,F(A_NX)). \end{aligned}$$

Substituting this equation and (3.11) into (5.2) with Z = U, we get

$$\begin{aligned} (\nabla_X C)(Y,V) &- (\nabla_Y C)(X,V) \\ &- \tau(X)C(Y,V) + \tau(Y)C(X,V) \\ &- \theta(X)C(FY,V) + \theta(Y)C(FX,V) \\ &- \alpha(\alpha-1)\{u(Y)\eta(X) - u(X)\eta(Y)\} \\ &= f_2\{u(Y)\eta(X) - u(X)\eta(Y) + 2\bar{g}(X,JY)\}. \end{aligned}$$

Comparing this equation with (5.3) such that PZ = V, we obtain

$$\{f_1 - f_2 - \alpha(\alpha - 1)\}\{u(X)\eta(Y) - u(Y)\eta(X)\} = 0.$$

Taking X = U and $Y = \xi$ to this equation, we have

$$f_1 - f_2 = \alpha(\alpha - 1).$$

Applying ∇_Y to (3.17) and using (3.7), (3.16) and (3.18)₁, we have

$$\begin{split} (\nabla_X C)(Y,\zeta) &= -(X\alpha)v(Y) + (\alpha-1)\{g(A_{\scriptscriptstyle N}X,FY) + g(A_{\scriptscriptstyle N}Y,FX) \\ &- v(Y)\tau(X) + (\alpha-1)\theta(Y)\eta(X)\}. \end{split}$$

Substituting this and (3.17) into (5.3) with $PZ = \zeta$, we get

$$\{f_1 - f_3 - \alpha(\alpha - 1)\}\{\theta(X)\eta(Y) - \theta(Y)\eta(X)\}$$

 $= (X\alpha)v(Y) - (Y\alpha)v(X).$

 f_1

Taking $X = \zeta$, $Y = \xi$ and X = U, Y = V to this by turns, we have

$$-f_3 = \alpha(\alpha - 1), \qquad U\alpha = 0.$$

Applying ∇_Y to $(3.18)_2$ and using (3.15) and $(3.18)_1$, we have

$$(\nabla_X B)(Y,\zeta) = -(X\alpha)u(Y) + \alpha \{u(Y)\tau(X) + B(X,FY) + B(Y,FX)\}.$$

Substituting this into (5.2) such that $Z = \zeta$ and using (3.18)₂, we have

 $(X\alpha)u(Y) = (Y\alpha)u(X).$

Taking Y = U to this result and using the fact that $U\alpha = 0$, we have $X\alpha = 0$. Therefore α is a constant. This completes the proof of the theorem.

Definition. (1) A lightlike hypersurface M is called *totally umbilical* [5] if there exists a smooth function ρ on a coordinate neighborhood \mathcal{U} such that

$$B(X,Y) = \rho g(X,Y).$$

In case $\rho = 0$, we say that M is totally geodesic.

(2) A screen distribution S(TM) is called *totally umbilical* [5] in M if there exists a smooth function γ on a coordinate neighborhood \mathcal{U} such that

$$C(X, PY) = \gamma g(X, Y).$$

In case $\gamma = 0$, we say that S(TM) is totally geodesic in M.

(3) A lightlike hypersurface M is called *screen conformal* [6] if there exists a non-vanishing smooth function φ on a coordinate neighborhood \mathcal{U} such that

$$C(X, PY) = \varphi B(X, Y)$$

Theorem 5.2. Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form $\overline{M}(f_1, f_2, f_3)$ with a non-metric ϕ -symmetric connection. If one of the following three conditions is satisfied,

- (1) M is totally umbilical,
- (2) S(TM) is totally umbilical, and
- (3) M is screen conformal,

then $\overline{M}(f_1, f_2, f_3)$ is a flat indefinite Sasakian manifold, that is,

$$\alpha = 1, \ \beta = 0; \qquad f_1 = f_2 = f_3 = 0.$$

Proof. (1) If M is totally umbilical, then $(3.18)_2$ is reduced to

$$\rho\theta(X) = -(\alpha - 1)u(X).$$

Taking $X = \zeta$ and X = U by turns, we have $\rho = 0$ and $\alpha = 1$ respectively. As $\rho = 0$, M is totally geodesic. As $\alpha = 1$ and $\beta = 0$, \overline{M} is an indefinite Sasakian manifold and f_1 , f_2 and f_3 are satisfied $f_1 = f_2 = f_3$ by Theorem 5.1.

Taking Z = U to (5.2) and using the fact that B = 0, we have

$$f_2\{u(Y)\eta(X) - u(X)\eta(Y) + 2\bar{g}(X, JY)\} = 0.$$

Taking $X = \xi$ and Y = U to this equation, we get $f_2 = 0$. Therefore, $f_1 = f_2 = f_3 = 0$ and $\overline{M}(f_1, f_2, f_3)$ is flat.

(2) If S(TM) is totally umbilical, then (3.17) is reduced to

$$\gamma \theta(X) = -(\alpha - 1)v(X).$$

Taking $X = \zeta$ and X = V by turns, we have $\gamma = 0$ and $\alpha = 1$ respectively. As $\gamma = 0, S(TM)$ is totally geodesic in M. As $\alpha = 1$ and $\beta = 0, \overline{M}$ is an indefinite Sasakian manifold and $f_1 = f_2 = f_3$ by Theorem 5.1.

Taking PZ = V to (5.3) and using the fact that C = 0, we have

$$f_1\{u(Y)\eta(X) - u(X)\eta(Y)\} + 2f_2\,\bar{g}(X, JY) = 0.$$

Taking $X = \xi$ and Y = U to this equation, we obtain $f_1 + 2f_2 = 0$. Thus $f_1 = f_2 = f_3 = 0$ and $\overline{M}(f_1, f_2, f_3)$ is flat.

(3) If M is screen conformal, then, from (3.17) and $(3.18)_2$, we have

$$(\alpha - 1)\{v(X) - \varphi u(X)\} = 0.$$

Taking X = V to this equation, we have $\alpha = 1$. As $\alpha = 1$ and $\beta = 0$, \overline{M} is an indefinite Sasakian manifold and $f_1 = f_2 = f_3$ by Theorem 5.1.

Applying ∇_X to $C(Y, PZ) = \varphi B(Y, PZ)$, we have

$$(\nabla_X C)(Y, PZ) = (X\varphi)B(Y, PZ) + \varphi(\nabla_X B)(Y, PZ).$$

Substituting this equation into (5.3) and using (5.2), we have

$$\begin{aligned} \{X\varphi - 2\varphi\tau(X)\}B(Y,PZ) - \{Y\varphi - 2\varphi\tau(Y)\}B(X,PZ) \\ &= f_1\{g(Y,PZ)\eta(X) - g(X,PZ)\eta(Y)\} \\ &+ f_2\{[v(Y) - \varphi u(Y)]\bar{g}(X,JPZ) - [v(X) - \varphi u(X)]\bar{g}(Y,JPZ) \\ &+ 2[v(PZ) - \varphi u(PZ)]\bar{g}(X,JY)\} \\ &+ f_3\{\theta(X)\eta(Y) - \theta(Y)\eta(X)\}\theta(PZ). \end{aligned}$$

Replacing Y by ξ to the last equation and using (3.5), we obtain

$$\{\xi\varphi - 2\varphi\tau(\xi)\}B(X, PZ)$$

= $f_1g(X, PZ) + f_2\{v(X) - \varphi u(X)\}u(PZ)$
+ $2f_2\{v(PZ) - \varphi u(PZ)\}u(X) - f_3\theta(X)\theta(PZ).$

Taking X = V, PZ = U and then, X = U, PZ = V by turns, we have $\{\xi \varphi - 2\varphi \tau(\xi)\}B(V,U) = f_1 + f_2$,

$$\{\xi\varphi - 2\varphi\tau(\xi)\}B(U,V) = f_1 + 2f_2,$$

respectively. As B(U, V) = B(V, U) by (3.3), from the last two equations we show that $f_2 = 0$. Thus $f_1 = f_2 = f_3 = 0$ and $\overline{M}(f_1, f_2, f_3)$ is flat. \Box

Theorem 5.3. Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form $\overline{M}(f_1, f_2, f_3)$ with a non-metric ϕ -symmetric connection. If one of the following three conditions is satisfied,

- (1) V is parallel with respect to the induced connection ∇ ,
- (2) U is parallel with respect to the induced connection ∇ , and
- (3) M is Lie recurrent,

then $\overline{M}(f_1, f_2, f_3)$ is a flat indefinite cosymplectic manifold, i.e.,

$$\alpha = \beta = 0,$$
 $f_1 = f_2 = f_3 = 0.$

Proof. (1) If V is parallel with respect to ∇ , then, by (1) of Theorem 4.4, we have (4.9) and $\tau = \alpha = \beta = 0$. As $\alpha = 0$, $f_1 = f_2 = f_3$ by Theorem 5.1.

Taking the scalar product with U to (4.9) and using (3.6) and (3.11), we get C(X, V) = 0

$$C(X,V) = 0.$$

Applying ∇_X to C(Y, V) = 0 and using the fact that V is parallel, we obtain $(\nabla_X C)(Y, V) = 0.$

Substituting the last two equations into (5.3) such that PZ = V, we have

$$f_1\{u(Y)\eta(X) - u(X)\eta(Y)\} + 2f_2\bar{g}(X, JY) = 0.$$

Taking $X = \xi$ and Y = U, we obtain $f_1 + 2f_2 = 0$. Thus $f_1 = f_2 = f_3 = 0$. (2) If U is parallel with respect to ∇ , then, by (2) of Theorem 4.4, we have

(4.10) and $\tau = \alpha = \beta = 0$. As $\alpha = 0$, $f_1 = f_2 = f_3$ by Theorem 5.1.

Taking the scalar product with U to (4.10) and using (3.7), we get

$$C(X, U) = 0.$$

Applying ∇_X to C(Y, U) = 0 and using the fact that U is parallel, we obtain $(\nabla_X C)(Y, U) = 0.$

Substituting the last two equations into (5.3) such that PZ = U, we have

$$(f_1 + f_2)\{v(Y)\eta(X) - v(X)\eta(Y)\} = 0$$

Taking X = V and $Y = \xi$, we obtain $f_1 + f_2 = 0$. Thus $f_1 = f_2 = f_3 = 0$. (3) As $\alpha = 0$, we get $f_1 = f_2 = f_3$. As $\tau(FX) = 0$, from (4.6), we have

$$B(X, U) = 0, \qquad B(U, X) = \theta(X)$$

Applying ∇_Y to the first equation and using (3.12), we have

$$(\nabla_X B)(Y, U) = -B(Y, F(A_N X)).$$

Substituting the last two equations into (5.2) such that Z = U, we have

$$B(X, F(A_NY)) - B(Y, F(A_NX))$$

$$= f_2\{u(Y)\eta(X) - u(X)\eta(Y) + 2\bar{g}(X, JY)\}.$$

Taking $X = \xi$ and Y = U to this, we obtain $f_2 = 0$. Thus $f_1 = f_2 = f_3 = 0$. \Box

References

- N. S. Agashe and M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), no. 6, 399–409.
- [2] M. Ahmad and A. Haseeb, Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric non-metric connection, Kyungpook Math. J. 49 (2009), no. 3, 533–543.
- [3] P. Alegre, D. E. Blair, and A. Carriazo, Generalized Sasakian space form, Israel J. Math. 141 (2004), 157–183.
- [4] C. Călin, Contributions to geometry of CR-submanifold, Thesis, University of Iasi, Romania, 1998.
- [5] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
- [6] D. H. Jin, Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold, Indian J. Pure Appl. Math. 41 (2010), no. 4, 569–581.
- [7] _____, Special lightlike hypersurfaces of indefinite Kaehler manifolds, Filomat 30 (2016), no. 7, 1919–1930.
- [8] _____, Lightlike hypersurface of an indefinite Kaehler manifold with a non-metric φsymmetric connection, accepted in Bull. Korean Math. Soc., 2016.
- J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187–193.

DAE HO JIN DEPARTMENT OF MATHEMATICS DONGGUK UNIVERSITY KYONGJU 780-714, KOREA *E-mail address*: jindh@dongguk.ac.kr