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LIGHTLIKE HYPERSURFACES OF AN INDEFINITE
TRANS-SASAKIAN MANIFOLD WITH A NON-METRIC
¢-SYMMETRIC CONNECTION

DAE Ho JIN

ABSTRACT. We study lightlike hypersurfaces M of an indefinite trans-
Sasakian manifold M with a non-metric ¢-symmetric connection. We
characterize the geometry of lightlike hypersurfaces of such a M.

1. Introduction

The notion of non-metric ¢-symmetric connection was introduced by Jin [8].
Semi-symmetric non-metric connection [1] and quarter-symmetric non-metric
connection [2] are two impotent examples of this connection. It is defined as
follow: An affine connection V on a semi-Riemannian manifold (M, g) is called
a non-metric ¢-symmetric connection if it and its torsion tensor T satisfy
(1.1) (Vxg)(Y,Z2) = =0(Y)o(X, Z) = 0(Z)p(X,Y),

(1.2) T(X,Y)=0(Y)JX —0(X)JY,
for any vector fields X, Y and Z on M, where ¢ and .J are tensor fields of types
(0,2) and (1,1) respectively, and 6 is a 1-form on M.

The objective of this paper is to study the geometry of lightlike hypersurfaces
of an indefinite trans-Sasakian manifold M with a non-metric ¢-symmetric
connection, in which the tensor field J in (1.2) is identical with the indefinite
almost contact structure tensor J of M, the tensor field ¢ in (1.1) is identical
with the fundamental 2-form associated with the tensor field J, i.e.,

(1.3) H(X,Y) = g(TX,Y),
and the 1-form 6, defined by (1.1) and (1.2), is identical with the structure
1-form 6 of the indefinite almost contact structure (J, ¢, 6, g) of M.

Denote v by the unique Levi-Civita connection of a semi-Riemannian mani-
fold (M, g) with respect to the metric g. It is known [8] that a linear connection
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V on M is non-metric ¢-symmetric connection if and only if it satisfies
(1.4) VxY =VxY +0(Y)JX.

In this paper, by saying that non-metric ¢-symmetric connection we shall mean
the non-metric ¢-symmetric connection defined by (1.4).

2. Lightlike hypersurfaces

An odd-dimensional semi-Riemannian manifold (M, §) is called an indefinite
almost contact metric manifold if there exist a (1, 1)-type tensor field J, a vector
field ¢ which is called the structure vector field, and a 1-form 6 such that

(2.1) JPX =-X+0(X)¢, §JX, JY) = §(X, V) = ef(X)0(Y), 0(C) =1,
for any vector fields X and Y on M, where ¢ = 1 or —1 according as  is

spacelike or timelike, respectively. The set {J, ¢, 0, g} is called an indefinite
almost contact metric structure of M. From (2.1), we show that

J(=0, 0oJ=0, 6X)=e€3(X,(), g(JX,Y)=—-g(X,JY).
In the entire discussion of this article, we shall assume that the structure

vector field ( is a spacelike one, i.e., e = 1, without loss of generality.

Definition. An indefinite almost contact metric manifold (M, g) is said to be
an indefinite trans-Sasakian manifold if, for any vector fields X and Y on M,
there exist two smooth functions « and 3 such that

(Vx )Y = afg(X,Y)¢ — 0(Y)X} + A{g(JX, V)¢ — 0(Y)J X}
We say that {J,(,0, g} is an indefinite trans-Sasakian structure of type (o, B).
The notion of indefinite trans-Sasakian manifold was introduced by Oubina

[9]. Indefinite Sasakian, Kenmotsu and cosymplectic manifolds are important
kinds of indefinite trans-Sasakian manifold such that

a=1, =0 a=0, =1, a=pF=0, respectively.
By directed calculation from (1.4), we obtain the following relation:
(VxJ)Y = (VxJ)Y +0(Y){X — 0(X)C}.
Thus, replacing the Levi-Civita connection \Y by the non-metric ¢-symmetric
connection V, the equation in the above Definition is reformed to
(2.2) (Vx )Y = o{g(X,Y)¢ - 0(Y)X} + B{g(JX,Y)¢ - 0(Y) X}
+OY){X —0(X)(}.

Replacing Y by ¢ to (2.2) and using J¢ = 0 and 0(Vx() = 0, we obtain
(2.3) Vx( =—(a—1)JX + B(X —0(X)Q).

Let (M, g) be a lightlike hypersurface of (M, g). Denote by F (M) the algebra
of smooth functions on M and by I'(E) the F'(M) module of smooth sections of

a vector bundle F over M. Also denote by (2.1); the i-th equation of the three
equations in (2.1). We use same notations for any others. It is known [5] that
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the normal bundle T M~ of M is a vector subbundle of the tangent bundle 7'M,
of rank 1, and coincides with the radical distribution Rad(TM)=TMNTM>.
A complementary vector bundle S(T'M) of TM~* in TM is non-degenerate
distribution on M, which is called a screen distribution on M, such that

TM =TM* @y, S(TM),

where @4, denotes the orthogonal direct sum. For any null section & of TM*
on a coordinate neighborhood U C M, there exists a unique null section N of
a unique vector bundle tr(T'M) in S(TM)= satistying

gl&,N)=1, g(N,N)=g(N,X)=0, VX eIl (S5(TM)).
We call tr(TM) and N the transversal vector bundle and the null transversal

vector field of M with respect to the screen distribution S(7'M) respectively.
The tangent bundle T'M of M is decomposed as follow:

TM =TM @ tr(TM) = {TM* ©tr(TM)} @open S(TM).

In the sequel, let X, Y, Z and W be the vector fields on M, unless otherwise
specified. Let P be the projection morphism of TM on S(T'M). Then the local
Gauss and Weingarten formulas of M and S(T'M) are given respectively by

(2.4) VxY = VxY + B(X,Y)N,
(2.5) VxN = —A X + 7(X)N,
(2.6) VxPY = V4PY +C(X,PY)E,
(2.7) Vxé = —ALX — a(X)E,

where V and V* are the induced linear connections on M and S(T'M) re-
spectively, B and C' are the local second fundamental forms on M and S(TM)
respectively, A, and Az are the shape operators on M and S(T'M ) respectively,
and 7 and o are 1-forms on M.

Due to [6], it is known that, for any lightlike hypersurface M of an indefinite
almost contact manifold M, J(TM+*) and J(tr(TM)) are vector subbundles of
S(TM), of rank 1. In the following, we shall assume that ¢ is tangent to M.
Calin [4] proved that if ¢ is tangent to M, then it belongs to S(T'M). In this
case, there exists two non-degenerate almost complex distributions D, and D
with respect to J, i.e., J(D,) = D, and J(D) = D, such that

S(TM) = J(TM™*)® J(tr(TM)) @oren Do,
D= T]\4L Dorth J(TML) Dortn Doa
TM =D& J(tr(TM)).
Consider two null vector fields U and V and their 1-forms v and v such that
(28) UZ*JN? V:*J§, U(X):g(va)v U(X):g(XvU)

Denote by S the projection morphism of TM on D. Any vector field X of M
is expressed as X = SX 4+ u(X)U. Applying J to this form, we have

(2.9) JX = FX + u(X)N,
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where F' is a tensor field of type (1,1) globally defined on M by FX = JSX.
Applying J to (2.9) and using (2.1); and (2.8), we have
(2.10) F?X = — X +u(X)U +0(X)C.

Denote by R, R and R* the curvature tensors of the non-metric ¢-symmetric
connection V on M, and the induced linear connections V and V* on M and

S(TM) respectively. Using the Gauss-Weingarten formulas, we obtain two
Gauss-Codazzi equations for M and S(T'M) such that

(2.11) R(X,Y)Z = R(X,Y)Z + B(X, Z)A,Y — B(Y, Z)A, X
+{(VxB)(Y,Z) = (VyB)(X, Z) + 7(X)B(Y, Z)
—7(Y)B(X,Z) + B(T(X,Y), Z)}N,

(2.12) R(X,Y)N = —Vx (A, Y) + Vy (4, X) + A, [X,Y]
+7(X)AY —1(Y)A X
+{B(Y,A,X) - B(X,A,Y) +2dr(X,Y)}N,

(2.13) R(X,Y)PZ = R*(X,Y)PZ + C(X, PZ)AfY — C(Y, PZ) At X
+{(VxO)Y, PZ) = (VyCO) (X, PZ) — o(X)C(Y, PZ)
+0o(Y)C(X,PZ) + C(T(X,Y), PZ)}¢,

(2.14) R(X,Y)E = —Vi (ALY) + Vi (A X) + A{[X,Y]
— 0(X)ALY +o(Y)ALX
+{O(Y, AfX) — O(X, ALY) — 2do (X, Y)}E.

3. Non-metric ¢-symmetric connections

Let (M,g) be an indefinite trans-Sasakian manifold with a non-metric ¢-
symmetric connection V. Using (1.1), (1.2), (1.3), (2.4) and (2.9), we obtain

(3.1) (Vxg)(Y, Z) = B(X,Y)n(Z) + B(X, Z)n(Y)
—0(Y)o(X, Z) = 0(2)p(X,Y),

(3.2) T(X,Y)=0(Y)FX —0(X)FY,

. B(X,)Y)-B(Y,X)=0Y)u(X) — 0(X)u(Y),
(3.4) P(X,8) =u(X), (X, N)=wv(X),

¢(X,V) =0, (X, U) = —n(X),
where T is the torsion tensor with respect to V and 7 is a 1-form such that
n(X) = §(X, N).

From the fact that B(X,Y) = g(VxY,¢), we know that B is independent
of the choice of the screen distribution S(TM) and satisfies

(3.5) B(X,¢§) = B(§, X) =0.
The local second fundamental forms are related to their shape operators by

(3.6) B(X,Y) = g(A:X,Y) + 6(Y )u(X), G(ALX,N) =0,
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(3.7) C(X,PY) = g(A, X, PY) +0(PY)u(X), §(A,X,N)=0,
and 7 = o. From (2.3), (2.6), (3.5) and the fact that 7 = o, we obtain
(3.8) Vx&=—A{X —7(X)E.
Applying Vx to g(¢, N) = 0 and using (1.1), (2.3), (2.5) and (3.4)2, we have
(3.9) 9(Ax X, €) = —av(X) + fn(X).

Theorem 3.1. Let M be a lightlike hypersurface of an indefinite trans-Sasakian
manifold M with a non-metric ¢-symmetric connection. Then 8 = 0.

Proof. Taking X =U and X = £ to (3.9) by turns, we obtain
(3.10) (A, U) =0, (A &) = 0.
From the Gauss equation (2.11) and (3.5), we see that
—G(R(X,Y)N,€) = g(R(X, V)&, N) = g(R(X, )N, €).
From this equation, (2.12), (2.14) and the fact that 7 = o, we obtain
B(Y,A,X) - B(X,A,Y) = C(X, A{Y) — C(Y, A; X).
Using this equation, (3.6) and (3.7), we obtain
O(AN X)u(Y) = 0(A Y)u(X) = 0(AgY)v(X) — 0(A; X)v(Y).
Replacing Y by U to this equation and using (3.10);, we have
0(Ay X) = 0(ALU)v(X).
Taking X = ¢, we get (A, &) = 0. From this and (3.10)2, we get 5 =0. O

Corollary 3.2. There exist no lightlike hypersurfaces of an indefinite Ken-
motsu manifold with a non-metric ¢-symmetric connection.

Applying Vx to (2.8) and (2.9) and using (2.2), (2.4), (2.5), (2.8), (2.9),

(3.1), (3.4)4, (3.7), (3.8) and the fact that 8 = 0, we have

(3.11)  B(X,U)=C(X,V),

(3.12) VU =F(A X)+(X)U — an(X)c,

(313)  VxV = F(A{X) - 7(X)V,

(3.14) (VxF)Y)=uY)A,X — B(X,Y)U — (a—1)0(Y)X

+{ag(X,Y) = 0(X)0(Y)}(,
(3.15) (Vxu)(Y) = —u(Y)7(X) — B(X,FY),
(3.16) (Vx0)(Y) = o(Y)7(X) = g(Ay X, FY) — (o = 1)O(Y )n(X).
From (3.7), we show that (3.9) satisfying S = 0 is equivalent to
(3.17) C(X,0) = —(a—1Dv(X).
Substituting (2.9) into (2.3) such that § = 0 and using (2.4), we have
(3.18) Vx(=—-(a—1)FX, B(X,¢) = —(a—1)u(X).
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4. Recurrent and Lie recurrent lightlike hypersurfaces

Definition. The structure tensor field F of M is said to be recurrent [7] if
there exists a 1-form w on M such that

(VxF)Y = w(X)FY.

A lightlike hypersurface M of an indefinite Kaehler manifold M is called re-
current if it admits a recurrent structure tensor field F'.

Theorem 4.1. There exist no recurrent lightlike hypersurfaces of an indefinite
trans-Sasakian manifold with a non-metric ¢-symmetric connection.

Proof. If M is recurrent, then, from the above definition and (3.14), we get
(4.1) w(X)FY =u(Y)A, X - B(X,Y)U — (a«—1)0(Y)X
T {ag(X,Y) - 6(X)0(Y)}C.
Replacing Y by & to this equation and using (3.5) and the fact that F§ = -V,
we get —w(X)V = 0. Taking the scalar product with U to this result, we
obtain w = 0. It follows that F is parallel with respect to the connection V.
Taking Y = ¢ to (4.1) and using (3.18), we get
(o = D{-X +u(X)U+0(X)(} =0.
It follows that o = 1. Thus M is an indefinite Sasakian manifold.
Taking the scalar product with ¢ to (4.1) and using (3.9), we get
g(X,Y)—0(X)0(Y) —v(X)u(Y) =0.
Taking the skew-symmetric part of this equation, we obtain
u(X)o(Y) —u(Y)v(X) = 0.
Taking X = U and Y =V to this result, we have 1 = 0. It is a contradiction.
Thus we have our theorem. (I

Corollary 4.2. There exist no lightlike hypersurfaces of an indefinite trans-
Sasakian manifold with a non-metric ¢p-symmetric connection such that the
structure tensor field F is parallel with respect to the connection V of M.

Definition. The structure tensor field F' of M is said to be Lie recurrent [7]
if there exists a 1-form 9 on M such that

(L, F)Y =9(X)FY,
where £, denotes the Lie derivative on M with respect to X, that is,
(L,F)Y =[X,FY] - F[X,Y].

The structure tensor field F' is called Lie parallel if L, F = 0. A lightlike
hypersurface M of an indefinite Kaehler manifold M is called Lie recurrent if
it admits a Lie recurrent structure tensor field F'.

Theorem 4.3. Let M be a Lie recurrent lightlike hypersurface of an indefinite
Kaehler manifold M with a non-metric ¢-symmetric connection. Then
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(1) F' is Lie parallel,
(2) a =0, i.e., M is an indefinite cosymplectic manifold,
(3) the 1-form T satisfies T = 0.

Proof. (1) Using the above definition, (2.10), (3.2) and (3.14), we get
(4.2)  O(X)FY = —Vpy X + FVy X +u(Y)A X

—{BX,Y) - 0Y)u(X)}U + o{g(X,Y)( - 0(Y)X}.
Taking Y = £ to (4.2) and using (2.9), we have

(4.3) —9(X)V = Vy X + FVX.
Taking the scalar product with V' and ¢ to (4.3) by turns, we have
(4.4) u(VyX) =0, 0(VyX) =0.

Replacing Y by V to (4.2) and using the fact that (V') = 0, we have
I(X)E = —VeX + FVy X — B(X,V)U + au(X)C.
Applying F to this equation and using (2.10) and (4.4), we obtain
I(X)V = VyX + FVX.
Comparing this equation with (4.3), we get ©# = 0. Thus F is Lie parallel.
(2) Taking the scalar product with ¢ to (4.2) and using (3.9), we have
—9(Vry X, () + a{g(X,Y) —o(X)u(Y) = 6(X)0(Y)} = 0.

Taking X = U to this equation and using (3.12) and the fact that n(FY) =
v(Y), we get av(Y) = 0. It follows that o = 0.
(3) Taking the scalar product with N to (4.2) and using (3.7)2, we have

(4.5) —g(VryX,N)+g(FVyX,N) = 0.

Replacing X by ¢ to (4.5) and using (2.7), (2.8), (2.9) and (3.6), we have
(4.6) B(X,U) = 7(FX).

Replacing X by U to (4.6) and using (3.11) and the fact that FU = 0, we get
(4.7) C(U,V) = B(U,U) = 0.

Replacing X by V to (4.5) and using (2.10), (3.6) and (3.13), we have
B(FY,U)=—7(Y).

Taking Y = U and Y = ¢ and using the fact that FU = F{ = 0, we obtain

(4.8) T(U) =0, 7(¢) = 0.

Replacing X by U to (4.2) and using (2.10), (3.3) and (3.9), we get

WY)A U — F(A FY) — A,Y — 7(FY)U = 0.

Taking the scalar product with V' and using (3.7), (3.11) and (4.7), we get

B(X,U) = —7(FX).
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Comparing this with (4.6), we obtain 7(FX) = 0. Replacing X by FY to this
result and using (3.9) and (4.8), we have 7 = 0. O

Theorem 4.4. Let M be a lightlike hypersurface of an indefinite trans-Sasakian
manifold M with a non-metric ¢-symmetric connection. If V or U is parallel
with respect to the induced connection V on M, then 7 = 0 and a = B8 =0,
i.e., M is an indefinite cosymplectic manifold.
Proof. (1) If V is parallel with respect to V, then, from (3.13), we have
F(A{X) —1(X)V =0.

Taking the scalar product with U to this equation, we have 7 = 0. Applying
F to the last equation and using (2.10), (3.6) and (3.18)2, we obtain

A X = —au(X)( +u(A; X)U.
Taking the scalar product with U and using (3.6), we have B(X,U) = 0. Thus
B(¢,U) = 0. Taking X =U and Y = ( to (3.3), we get B(U,() = 1. On the
other hand, replacing X by U to (3.18)2, we have B(U,() = —a+ 1. From the
above two results, we get « = 0 and

(4.9) A X = u(A; X)U.
(2) If U is parallel with respect to V, then, from (3.12), we have
F(A,X)+7(X)U — an(X)¢ = 0.
Taking the scalar product with ¢ and V' to this equation by turns, we get o = 0

and 7 = 0 respectively. Applying F to the last equation and using (2.10), (3.9)
and the fact that a = 8 = 0, we obtain

(4.10) Ay X = u(A, X)U.
As a=f=0in (1) and (2), M is an indefinite cosymplectic manifold. d

5. Indefinite generalized Sasakian space forms

Definition. An indefinite trans-Sasakian manifold (M, J,¢,0,9) is called an
indefinite generalized Sasakian space form, denote it by M(f1, f2, f3), if there
exist three smooth functions f;, fo and f3 on M such that
(5.1)  RX.Y)Z = fi{g(Y, 2)X — §(X, Z)Y}
+ f{g(X,JZ)JY —§(Y,JZ)JX + 25§(X,JY)JZ}
+ f{0(X)0(2)Y — 0(Y)0(Z2)X
for any vector fields X, Y and Z on M.
The generalized Sasakian space form M (f1, f2, f3) was introduced by Alegre

etal. [3]. Sasakian, Kenmotsu and cosymplectic space forms are important
kinds of indefinite generalized Sasakian space forms such that

fi= fo=f=3 A= fa=fs=2 fi=f=f3=%,
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respectively, where ¢ is a constant J-sectional curvature of each space forms.
Comparing the transversal components of (2.11) and (5.1), we have

(5-2) (VxB)(Y, Z2) = (Vy B)(X, Z)
+ 7(X)B(Y,Z) - 7(Y)B(X,Z)
— 0(X)B(FY,Z)+0(Y)B(FX, Z)
= fo{u(V)g(X,JZ) —u(X)g(Y,JZ) + 2u(Z)g(X, JY)}.
Taking the scalar product with N to (2.11) and using (3.7)2, we have
G(R(X,Y)PZ,N) = §(R(X,Y)PZ,N).
Substituting (2.13) and (5.1) into the last equation and using (3.2), we get
(5.3) (VxC)Y,PZ)— (VyC)(X,PZ)
- 71(X)C(Y,PZ)+7(Y)C(X,PZ)
— 0(X)C(FY,PZ)+0(Y)C(FX,PZ)
= fi{g(Y, PZ)n(X) — g(X, PZ)n(Y)}
+ fo{lo(W)g(X,JPZ) —v(X)g(Y,JPZ) + 20(PZ)g(X,JY)}
+ f3{0(X)n(Y) = 0(Y)n(X)}0(PZ).
Theorem 5.1. Let M be a lightlike hypersurface of an indefinite generalized

Sasakian space form M(f1, f2, f3) with a non-metric ¢-symmetric connection.
Then « is a constant, 8 =0, and the functions f1, fo and f3 are satisfied

fo=fs=fi—ala—-1).
Proof. Applying Vy to (3.11) and using (3.12), (3.13) and (3.18), we get
(VxB)(Y,U) = (VxO)(Y, V)
—27(X)C(Y, V) — ala — Du(Y)n(X)
— 9(ALX, F(ALY)) — g(AgY, F(A X)).
Substituting this equation and (3.11) into (5.2) with Z = U, we get
(VxO)Y, V)= (VyC)(X,V)
- 71(X)CY,V)+7(Y)C(X,V)
— 0 X)C(FY,V)+6(Y)C(FX,V)
— ala = D{u(Y)n(X) — u(X)n(Y)}
= fo{u(Y)n(X) = u(X)n(Y) + 25(X, JY)}.
Comparing this equation with (5.3) such that PZ =V, we obtain
{1 = fo—ala =) Hu(X)n(Y) = u(Y)n(X)} =0.

Taking X = U and Y = £ to this equation, we have
fl — f2 = a(a — 1).
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Applying Vy to (3.17) and using (3.7), (3.16) and (3.18)1, we have
(VxO)Y, () = —(Xa)o(Y)+ (a—1){g9(A X, FY) 4+ g(A,Y, FX)
—o(Y)7(X) + (a = DO(Y)n(X)}-
Substituting this and (3.17) into (5.3) with PZ = ¢, we get
{fi = fs —ala =HHOX)n(Y) — 6(Y)n(X)}
= (Xa)v(Y) - (Ya)v(X).
Taking X =(, Y =¢ and X =U, Y =V to this by turns, we have
fi—fa=ala—-1), Ua = 0.
Applying Vy to (3.18)2 and using (3.15) and (3.18)1, we have
(VxB)(Y, () = =(Xe)u(Y)
+ af{u(Y)7(X)+ B(X,FY)+ B(Y,FX)}.
Substituting this into (5.2) such that Z = ¢ and using (3.18)2, we have
(Xa)u(Y) = (Ya)u(X).
Taking Y = U to this result and using the fact that Ua = 0, we have Xa = 0.
Therefore o is a constant. This completes the proof of the theorem. (Il
Definition. (1) A lightlike hypersurface M is called totally umbilical [5] if there
exists a smooth function p on a coordinate neighborhood U such that
B(X,Y) = pg(X,Y).

In case p = 0, we say that M is totally geodesic.
(2) A screen distribution S(T'M) is called totally umbilical [5] in M if there
exists a smooth function v on a coordinate neighborhood U such that

C(X,PY)=~g9(X,Y).

In case v = 0, we say that S(T'M) is totally geodesic in M.
(3) A lightlike hypersurface M is called screen conformal [6] if there exists
a non-vanishing smooth function ¢ on a coordinate neighborhood U such that

C(X,PY) = ¢B(X,Y).

Theorem 5.2. Let M be a lightlike hypersurface of an indefinite generalized
Sasakian space form M(fy, f2, f3) with a non-metric ¢-symmetric connection.
If one of the following three conditions is satisfied,

(1) M is totally umbilical,

(2) S(TM) is totally umbilical, and

(3) M is screen conformal,

then M (f1, f2, f3) is a flat indefinite Sasakian manifold, that is,
a=1, 3=0; fi=fo=f3=0.
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Proof. (1) If M is totally umbilical, then (3.18)2 is reduced to

p0(X) = —(a — Du(X).
Taking X = ¢ and X = U by turns, we have p = 0 and a = 1 respectively. As
p =0, M is totally geodesic. As a =1 and 8 =0, M is an indefinite Sasakian

manifold and f1, fo and f3 are satisfied f; = fo = f3 by Theorem 5.1.
Taking Z = U to (5.2) and using the fact that B = 0, we have

fo{u(Y)n(X) —u(X)n(Y) +29(X, JY)} = 0.

Taking X = ¢ and Y = U to this equation, we get fo = 0. Therefore, f; =

fo = f3=0and M(f1, f2, f3) is flat.
(2) If S(T'M) is totally umbilical, then (3.17) is reduced to

Y9(X) = —(a — Dv(X).
Taking X = ¢ and X =V by turns, we have v = 0 and o = 1 respectively. As
v =0, S(TM) is totally geodesic in M. As o« =1 and =0, M is an indefinite
Sasakian manifold and f; = fo = f3 by Theorem 5.1.
Taking PZ =V to (5.3) and using the fact that C' = 0, we have

S{u(Y)n(X) —u(X)n(Y)} + 2f29(X, JY) = 0.
Taking X = € and Y = U to this equation, we obtain f; + 2fs = 0. Thus

fi=fo=f3=0and M(fi, f2, f3) is flat.
(3) If M is screen conformal, then, from (3.17) and (3.18)2, we have

(@ = D{v(X) — pu(X)} = 0.
Taking X = V to this equation, we have « = 1. As o« =1 and 8 =0, M is an
indefinite Sasakian manifold and f; = fo = f3 by Theorem 5.1.
Applying Vx to C(Y,PZ) = pB(Y,PZ), we have

(VxCO)Y,PZ) = (Xp)B(Y,PZ) + o(VxB)(Y, PZ).
Substituting this equation into (5.3) and using (5.2), we have
{Xo—=207(X)}B(Y,PZ) = {Yp - 207(Y)}B(X, PZ)
= fi{g(Y, PZ)n(X) —g(X, PZ)n(Y)}
+ foA[v(Y) — puY)|g(X, JPZ) — [v(X) — pu(X)]g(Y, JPZ)
+2[v(PZ) — pu(PZ)|g(X,JY)}
+ fs{0(X)n(Y) = 0(Y)n(X)}0(PZ).
Replacing Y by £ to the last equation and using (3.5), we obtain
{€p —207()}B(X, PZ)
= f19(X, PZ) + fo{v(X) — pu(X)}u(PZ)
+ 2f2{v(PZ) — pu(PZ)}u(X) — f30(X)0(PZ).
Taking X =V, PZ =U and then, X = U, PZ =V by turns, we have
{&p = 207(}B(V,U) = f1+ fa,
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{&p = 207(O)}B(U, V) = f1 + 2/,
respectively. As B(U,V) = B(V,U) by (3.3), from the last two equations we
show that fo = 0. Thus f1 = fo = f3 =0 and M(f1, f2, f3) is flat. O

Theorem 5.3. Let M be a lightlike hypersurface of an indefinite generalized
Sasakian space form M(f1, f2, f3) with a non-metric ¢-symmetric connection.
If one of the following three conditions is satisfied,

(1) V is parallel with respect to the induced connection V,
(2) U is parallel with respect to the induced connection V, and
(3) M is Lie recurrent,

then M(f1, f2, f3) is a flat indefinite cosymplectic manifold, i.e.,
a:ﬁ:o, f1:f2:f3:0

Proof. (1) If V is parallel with respect to V, then, by (1) of Theorem 4.4, we
have (4.9) and T=a==0. Asa =0, f; = fo = f3 by Theorem 5.1.
Taking the scalar product with U to (4.9) and using (3.6) and (3.11), we get

C(X,V)=0.
Applying Vx to C(Y,V) = 0 and using the fact that V is parallel, we obtain
(VxC)Y,V)=0.
Substituting the last two equations into (5.3) such that PZ =V, we have
Si{u(Y)n(X) —u(X)n(Y)} +2f29(X, JY) = 0.

Taking X = ¢ and Y = U, we obtain f1 +2f> =0. Thus f1 = fo = f3 =0.
(2) If U is parallel with respect to V, then, by (2) of Theorem 4.4, we have
(410)and T=a=6=0. Asa =0, f1 = fo = f3 by Theorem 5.1.
Taking the scalar product with U to (4.10) and using (3.7), we get

C(X,U)=0.
Applying Vx to C(Y,U) = 0 and using the fact that U is parallel, we obtain
(VxC)(Y,U) = 0.
Substituting the last two equations into (5.3) such that PZ = U, we have
(f1 + F2) {0 (Y )0(X) = o(X)n(¥)} = 0.

Taking X =V and Y = £, we obtain f1 + fo = 0. Thus f1 = fo = f3 =0.
(3) As a =0, we get f1 = fa= f3. As 7(FX) =0, from (4.6), we have

B(X,U) =0, B(U,X) =0(X).
Applying Vy to the first equation and using (3.12), we have
(VxB)(Y,U)=—-B(Y,F(A,X)).
Substituting the last two equations into (5.2) such that Z = U, we have
B(X,F(A,Y))— B(Y,F(A,X))
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= fofu(Y)n(X) —u(X)n(Y) +25(X, JY)}.

Taking X = £ and Y = U to this, we obtain fo = 0. Thus f1 = fo = f3=0. O
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