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MULTIPLE SOLUTIONS FOR A CLASS OF QUASILINEAR

SCHRÖDINGER SYSTEM IN R
N

Caisheng Chen and Qiang Chen

Abstract. This paper is concerned with the quasilinear Schrödinger sys-
tem

(0.1)

{
−∆u+ a(x)u −∆(u2)u = Fu(u, v) + h(x) x ∈ R

N ,

−∆v + b(x)v −∆(v2)v = Fv(u, v) + g(x) x ∈ R
N ,

where N ≥ 3. The potential functions a(x), b(x) ∈ L∞(RN ) are bounded
in R

N . By using mountain pass theorem and the Ekeland variational
principle, we prove that there are at least two solutions to system (0.1).

1. Introduction and main result

In this paper, we are interested in the existence of solutions for the quasi-
linear Schrödinger system

(1.1)

{
−∆u+ V1(x)u −∆(u2)u = h1(x, u, v), x ∈ R

N ,

−∆v + V2(x)v −∆(v2)v = h2(x, u, v), x ∈ R
N .

The system is related to the existence of solitary wave solutions for quasi-
linear Schrödinger equation

(1.2) izt = −∆z +W (x)z − h(|z|2)z − κ∆(l(|z|2))l′(|z|2)z, x ∈ R
N ,

where z : R× R
N → C, W : RN → R is a given potential, κ is a real constant

and l, h are real functions. Quasilinear equations of the form (1.2) appear
naturally in mathematical physics and have been derived as models of several
physical phenomena corresponding to various types of nonlinear terms l. For
instance, when l(s) = s, Eq. (1.2) can be used to model a superfluid film
equation in plasma physics (see Kurihura [9]). In the case l(s) =

√
1 + s,

Eq. (1.2) models the self-channeling of a high-power ultra short laser in matter
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(see [10]). For more mathematical models in physics described by (1.2), see [14]
and the references therein.

As we know, that the solitary wave solution of the form z(t, x) = e−iωtu(x)
satisfies (1.2) with l(s) = s if and only if the function u(x) solves the equation
of elliptic type

(1.3) −∆u+ V (x)u − κ∆(u2)u = θ(u), x ∈ R
N ,

where V (x) =W (x)− ω, ω ∈ R and θ(u) = l(u2)u. Without loss of generality
we assume κ = 1.

In the last decades, Eq. (1.3) has received great interest and there are recent
mathematical studies in the existence of solutions for (1.3). Among others we
refer to [6, 7, 11, 13] and the references therein.

There are also several papers concerned with the quasilinear Schrödinger sys-
tem (1.1). Guo and Tang in [8] have studied with h1(x, u, v) =

2α
α+β

|u|α−2|v|βu

and h2(x, u, v) = 2β
α+β

|u|α|v|β−2v and the potentials V1(x) = λa(x) + 1 and

V2(x) = λb(x) + 1, where λ is a positive parameter. By using Nehari manifold
method and concentration compactness principle, they proved that there exists
a ground state solution which localize near the potential well int{a−1(0)} =
int{b−1(0)} for λ sufficiently large. Severo and Silva in [15] employed minimax
methods in a suitable Orlicz space to establish the existence of standing wave
solutions for the quasilinear Schrödinger system (1.1) involving subcritical non-
linearities, their conclusion is under the assumptions on the potentials V1 and
V2:

(V1) The functions V1, V2 : RN → R are continuous and satisfy

inf
RN

V1 > 0, inf
RN

V2 > 0;

(V2) There exists M0 > 0 such that for all M ≥M0

meas({x ∈ R
N |Vi(x) ≤M}) <∞, i = 1, 2.

The assumption (V2) is also essential in [8] and it guarantees the compactness
of the embedding X →֒ [Ls(RN )]2 (see Lemma 2.2 in [15]). But in this paper,
we will prove the existence of solutions for quasilinear Schrödinger equations
with general bounded potential. As the domain is the whole space R

N , a
main difficulty when dealing with this problem is the lack of compactness of
Sobolev embedding theorem. So, motivated by Alves and Souto [1], we develop
a new technique to verify the Cerami condition and then prove the existence
of multiple solutions by mountain pass theorem and the Ekeland variational
principle.

In this work, we study the following quasilinear Schrödinger system

(1.4)

{
−∆u+ a(x)u −∆(u2)u = Fu(u, v) + h(x) x ∈ R

N ,

−∆v + b(x)v −∆(v2)v = Fv(u, v) + g(x) x ∈ R
N ,

where N ≥ 3.
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Throughout this paper, we make the following assumptions:

(H1) The functions a(x), b(x) ∈ C(RN ) and satisfy a0 ≤ a(x) ≤ a1, b0 ≤
b(x) ≤ b1 in R

N for some positive constants a0, b0, a1, b1.
(H2) The nonnegative function F (u, v) ∈ C1(R2) is positively homogeneous

of degree d ∈ (4, 2 · 2∗) where 2∗ = 2N
N−2 , that is, F (tu, tv) = tdF (u, v)

(t > 0) for any (u, v) ∈ R
2. Also, assume Fu(u, v), Fv(u, v) are increas-

ing function about u, v. Furthermore, there exists the constant c0 > 0
such that for any (u, v) ∈ R

2

(1.5) 0 ≤ F (u, v), Fu(u, v)u, Fv(u, v)v ≤ c0(|u|
d + |v|d).

(H3) h, g ∈ L∞

loc(R
N ) ∩ Lµ(RN ) with µ = 2·2∗

2·2∗−1 .

Remark 1.1. By the assumption (H1), we have the so-called Euler identity

Fu(u, v)u+ Fv(u, v)v = dF (u, v), ∀(u, v) ∈ R
2.

Obviously, the function F (u, v) = |u|α|u|β(α, β > 1, α+ β = d) and F (u, v) =
(u2 + v2)d/2 satisfy (H2).

Remark 1.2. For convenience, we assume that a0 = b0 = 1 in (H1).

By (H1) the norm for X = Y = H1(RN ) can be defined by

(1.6) ‖u‖X = (

∫

RN

(|∇u|2 + a(x)|u|2)dx)1/2 ∀u ∈ X,

and

(1.7) ‖u‖Y = (

∫

RN

(|∇u|2 + b(x)|u|2)dx)1/2 ∀u ∈ Y.

For the product space E = X × Y , we introduce the norm

(1.8) ‖(u, v)‖E = ‖u‖X + ‖v‖X , ∀(u, v) ∈ E.

Then E is the reflexive Banach space endowed with the norm ‖(u, v)‖E .
It is well known that there is a constant S > 0 such that

(1.9) S(

∫

RN

|u|2
∗

)2/2
∗

dx ≤

∫

RN

|∇u|2dx, ∀u ∈ C∞

0 (RN ).

From the approximation argument, we see that (1.9) holds on H1(RN ).

Definition 1.1. A pair of functions (u, v) ∈ E is said to be a weak solution of
problem (1.4) if for any (ϕ, ψ) ∈ E there holds

∫

RN

[(1 + 2u2)∇u∇ϕ+ 2u|∇u|2ϕ+ (1 + 2v2)∇v∇ψ(1.10)

+ 2v|∇v|2ψ + a(x)uϕ+ b(x)vψ]dx

=

∫

RN

(Fu(u, v)ϕ+ Fv(u, v)ψ)dx +

∫

RN

(h(x)ϕ + g(x)ψ)dx.

Our main result in this paper is as follows.
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Theorem 1.3. Let (H1)-(H3) hold. Then there exists m0 > 0 such that for

0 < ‖h‖µ + ‖g‖µ ≤ m0, problem (1.4) admits at least two solutions in E.

Remark 1.4. From the proof of Theorem 1.3 below, we found that it is admis-
sible to suppose that one of the functions h(x) and g(x) is zero in R

N .

This paper is organized as follows: In the forthcoming section, with a con-
venient change of variable, we establish the variational framework for problem
(1.4). In Section 3, we verify that the energy functional associated to prob-
lem (1.4) satisfies the Cerami condition. Section 4 is devoted to the proof
of Theorem 1.3 by using mountain pass theorem and the Ekeland variational
principle.

2. Preliminaries

We observe that the natural energy functional associated to problem (1.4)
is given by

(2.1)

I(u, v) =
1

2

∫

RN

[(1 + 2u2)|∇u|2 + (1 + 2v2)|∇v|2 + a(x)u2 + b(x)v2]dx

−

∫

RN

F (u, v)dx−

∫

RN

(h(x)u + g(x)v)dx.

It should be pointed out that the functional I is not well defined in general
in E. To overcome this difficulty, we apply an argument developed by [6] (see
also [12]). we make the change of variables by u = f(z), v = f(w), where f is
defined by

(2.2) f ′(t) =
1√

1 + 2|f(t)|2
on [0,+∞) and f(−t) = −f(t) on (−∞, 0).

Let us collect some properties of the change of variables f , which will be
used frequently in the sequel of the paper. Proofs may be found in [6] and [4].

Lemma 2.1. The function f(t) satisfies the following properties:
(f1) f is uniquely defined, odd, increasing and invertible;
(f2) 0 < f ′(t) ≤ 1, ∀t ∈ R;
(f3) |f(t)| ≤ |t|, ∀t ∈ R;
(f4) f(t)/t→ 1 as t→ 0;
(f5) f(t)/

√
t→ 21/4 as t→ ∞;

(f6) f(t)/2 ≤ tf ′(t) ≤ f(t), ∀t > 0;
(f7) |f(t)| ≤ 21/4|t|1/2, ∀t ∈ R;
(f8) There exists a positive constant C such that

|f(t)| ≥

{
C|t|, |t| ≤ 1,
C|t|1/2, |t| ≥ 1;

(f9) For n < τ ≤ n+ 1(n ∈ N), t ∈ R, |f(τt)| ≤ (n+ 1)|f(t)|.
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So, after the change of variables, we can write I(u, v) as

(2.3)

J(z, w) = I(f(z), f(w))

=
1

2

∫

RN

[|∇z|2 + |∇w|2 + a(x)f2(z) + b(x)f2(w)]dx

−

∫

RN

F (f(z), f(w))dx −

∫

RN

(h(x)f(z) + g(x)f(w))dx,

which is well defined on the space E under the assumptions (H1)-(H3). Our
hypotheses imply that J ∈ C1(E,R), and

(2.4)

J ′(z, w)(ϕ, ψ)

=

∫

RN

[∇z∇ϕ+∇w∇ψ + a(x)f(z)f ′(z)ϕ+ b(x)f(w)f ′(w)ϕ]dx

−

∫

RN

[Fuf
′(z)ϕ+ Fvf

′(w)ψ]dx−

∫

RN

[h(x)f ′(z)ϕ+ g(x)f ′(w)ψ]dx

for any (ϕ, ψ) ∈ E. Moreover, the critical points of the functional J are the
weak solutions of the following equations:

(2.5)

{
−∆z + a(x)f(z)f ′(z)=Fu(f(z), f(w))f

′(z) + h(x)f ′(z), x ∈ R
N ,

−∆w + b(x)f(w)f ′(w)=Fv(f(z), f(w))f
′(w) + h(x)f ′(w), x ∈ R

N ,

and (f(z), f(w)) is a weak solution of (1.4).

Remark 2.2. Using (f7), we see from Hölder inequality and (1.9) that, for any
measurable region Ω ⊂ R

N and (z, w) ∈ E, there are constants Ch, Cg > 0
such that

(2.6)

∫

Ω

|hf(z)|dx ≤ Ch‖h‖Lµ(Ω)‖z‖
1/2
X ,

∫

Ω

|gf(w)|dx ≤ Cg‖g‖Lµ(Ω)‖w‖
1/2
Y .

To obtain the existence of solutions to problem (1.4), we need to prove that
the functional J defined by (2.3) satisfies the Cerami condition.

We first recall that a sequence {(zn, wn)} in E is called Cerami sequence of
J if {J(zn, wn)} is bounded and

(2.7) (1 + ‖(zn, wn)‖E)‖J
′(zn, wn)‖E∗ → 0 as n→ ∞.

The functional J satisfies the Cerami condition if any Cerami sequence pos-
sesses a convergent subsequence in E.

Lemma 2.3. Assume (H1)-(H3). If {(zn, wn)} ⊂ E is a Cerami sequence,

then {(zn, wn)} is bounded in E.

Proof. Set ϕn = f(zn)
f ′(zn)

, ψn = f(wn)
f ′(wn)

. Then, using (f2) and (f6) in Lemma 2.1,

we have

|ϕn| ≤ 2|zn|, |ψn| ≤ 2|wn|, |∇ϕn| ≤ 2|∇zn|, |∇ψn| ≤ 2|∇wn|.
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So we get

(2.8)

J ′(zn, wn)(ϕn, ψn)

≤ 2

∫

RN

[|∇zn|
2 + |∇wn|

2 + a(x)f2(zn) + b(x)f2(wn)]dx

−

∫

RN

[Fuf(zn) + Fvf(wn)]dx−

∫

RN

[h(x)f(zn) + g(x)f(wn)]dx.

Since {(zn, wn)} is a Cerami sequence in E, there is a constant C1 > 0 such
that

(2.9)

C1 ≥ J(zn, wn)−
1

d
J ′(zn, wn)(ϕn, ψn)

≥ (
1

2
−

2

d
)

∫

RN

[|∇zn|
2 + |∇wn|

2 + a(x)f2(zn) + b(x)f2(wn)]dx

+ (1−
1

d
)

∫

RN

[h(x)f(zn) + g(x)f(wn)]dx.

Set A2
n =

∫
RN [|∇zn|

2 + |∇wn|2 + a(x)f2(zn) + b(x)f2(wn)]dx. Then as in
Remark 2.2, we can obtain that, there is a constant C2 > 0 such that

(2.10)

∫

RN

|h(x)f(zn) + g(x)f(wn)|dx ≤ C2A
1/2
n .

So {A2
n} is bounded. As Chen did in [4], we can obtain that there is a constant

C0 > 0 such that

(2.11) An ≥ C0‖(zn, wn)‖E .

So {(zn, wn)} is bounded in E. �

Since the sequence {(zn, wn)} given by Lemma 3.1 is a bounded sequence
in E, there exist a constant M > 0 and (z, w) ∈ E, and a subsequence of
{(zn, wn)}, still denoted by {(zn, wn)}, such that ‖(zn, wn)‖E ≤M , ‖(z, w)‖E
≤M and
(2.12)

(zn, wn)⇀(z, w)weakly inE, zn(x)→z(x), wn(x)→w(x) a.e. in R
N ,

(zn, wn)→(z, w) inLr
loc(R

N )× Ls
loc(R

N ), ∀ r, s ∈ [1, 2∗).

Lemma 2.4. Let (H1)-(H3) hold. If the sequence {(zn, wn)} satisfies (2.12),
then

(2.13) lim
n→∞

∫

RN

F (f(zn), f(wn)) =

∫

RN

F (f(z), f(w)),

(2.14) lim
n→∞

∫

RN

Fu(f(zn), f(wn))f
′(zn)zn =

∫

RN

Fu(f(z), f(w))f
′(z)z,

(2.15) lim
n→∞

∫

RN

Fv(f(zn), f(wn))f
′(wn)wn =

∫

RN

Fv(f(z), f(w))f
′(w)w.
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Proof. From (2.12), one sees that zn → z, wn → w in Ld/2(Br) for any r > 0.
Then from (1.5) we know

(2.16) lim
n→∞

∫

Br

F (f(zn), f(wn)) =

∫

Br

F (f(z), f(w)).

In the following we prove that, for any small ǫ > 0, there exists r0 > 0 such
that for any n ∈ N and r ≥ r0,

(2.17)

∫

Bc
r

F (f(zn), f(wn)) ≤ ǫ,

∫

Bc
r

F (f(z), f(w)) ≤ ǫ.

By (H2) and (f7), for any small ε > 0, there exist S0 > s0 > 0 such that

(2.18) |F (f(z), f(w))| ≤

{
ε|(z, w)|2 if |(z, w)| ≤ s0,

ε|(z, w)|2
∗

if |(z, w)| ≥ S0,

where (z, w) ∈ R
2 and |(z, w)| =

√
z2 + w2. This shows that

|F (f(z), f(w))|

≤ ε(|(z, w)|2 + |(z, w)|2
∗

) + χ[s0,S0](
√
z2 + w2)|F (f(z), f(w))|, ∀ (u, v) ∈ R

2,

(2.19)

where χA denotes the characteristic function associated to the mensurable sub-
set A ⊂ R. We then obtain

∫

Bc
r

|F (f(zn), f(wn))|dx

≤ εQ(zn, wn) + β0

∫

An

⋂
Bc

r

χ[s0,S0](
√
z2 + w2)dx, ∀n ∈ N,

(2.20)

where

An = {x ∈ R
N |s0 ≤ |(zn, wn)| ≤ S0},

β0 = max
s0≤|(zn,wn)|≤S0

|F (f(zn), f(wn))|

and

(2.21) Q(zn, wn) =

∫

RN

(|(zn, wn)|
2 + |(zn, wn)|

2∗)dx ∀n ∈ N.

From (H2), we know 0 < β0 ≤ c0S
d
0 . It follows from (2.12) that there exists a

constant M1 > 0 such that

(2.22) Q(zn, wn) ≤

∫

RN

(z2n + w2
n + 22

∗
−1(|zn|

2∗ + |wn|
2∗))dx ≤M1.

Then we have

(2.23) s20|An| ≤

∫

An

|(zn, wn)|
2dx ≤ Q(zn, wn) ≤M1,
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where |An| = meas(An). Relation (2.23) shows that sup
n∈N

|An| ≤ s−2
0 M1 ≡ ρ <

∞. We now assert that lim
r→∞

|An ∩Bc
r | = 0 uniformly in n ∈ N. To begin with,

we show that

(2.24) lim
r→∞

|An ∩Bc
r | = 0 for all n ∈ N.

In fact, if the assertion is not true, then there exist n0 ≥ 1, δ > 0, and rj → ∞
such that

(2.25) |An0
∩Bc

rj
| ≥ δ, ∀j ∈ N.

Clearly, |An0
∩Bc

rj
| ≤ |An0

| ≤ ρ, ∀j ∈ N.

Denote Ωj = Bc
rj

\Bc
rj+1

, ∀j ∈ N. It is easy to see that

(2.26) Bc
rj

=

∞⋃

k=j

Ωk, ∀j ∈ N, Ωk ∩ Ωm = ∅, if k 6= m.

Thus we have

|An0
∩Bc

rj
| =

∞∑

k=j

|An0
∩Ωk| ≥ δ, ∀j ∈ N

and the series
∑∞

k=1 |An0
∩ Ωk| = ∞. This is a contradiction. Thus, the limit

(2.24) is proved. In the following, we show that this limit is true uniformly in
n ∈ N.

In fact, it follows from (2.12) that (z, w) ∈ L2(RN ) × L2(RN ) and (zn(x),
wn(x)) → (z(x), w(x)) a.e. in R

N . Therefore, for any small ε > 0, there exists
r0 > 1 such that r > r0,

(2.27)

∫

Bc
r

(|z|2 + |w|2)dx ≤ ε.

For this ε > 0, we choose t1 = r0, tj → ∞ such that Dj = Bc
tj

\ Bc
tj+1

,
Bc

r0
= ∪∞

j=1Dj and

(2.28)

∫

Dj

(|z|2 + |w|2)dx ≤
ε

2j
, ∀j ∈ N.

Obviously, for every fixed j ∈ N, Dj is a bounded domain and Dj ∩ Di = ∅
(j 6= i). Furthermore, s0 ≤ |(zn, wn)| ≤ S0 in Dj ∩ An. By Fatou’s lemma, we
have for every j ∈ N,

lim sup
n→∞

∫

Dj∩An

(|zn|
2 + |wn|

2)dx ≤

∫

Dj

lim sup
n→∞

(|zn|
2 + |wn|

2)dx(2.29)

≤

∫

Dj

(|z|2 + |w|2)dx ≤
ε

2j
.
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Then we obtain

(2.30)

s20 lim sup
n→∞

|An ∩Bc
r0
| ≤ lim sup

n→∞

∫

Bc
r0

∩An

(|zn|
2 + |wn|

2)dx

= lim sup
n→∞

∞∑

j=1

∫

Dj∩An

(|zn|
2 + |wn|

2)dx

≤
∞∑

j=1

lim sup
n→∞

∫

Dj∩An

(|zn|
2 + |wn|

2)dx

≤
∞∑

j=1

∫

Dj

(|z|2 + |w|2)dx

≤
∞∑

j=1

ε

2j
= ε.

Noticing that for any r > r0 and n ∈ N, we have (An ∩ Bc
r) ⊂ (An ∩

Bc
r0
). Therefore, the application of (2.24) and (2.30) yields lim

r→∞
|An ∩Bc

r | = 0

uniformly in n ∈ N.
Then, for each ε > 0, there exist the constants r0 > 1 and 0 < δ0 ≤ ε

β0

, such

that |An ∩Bc
r | < δ0 for any r > r0 and n ∈ N, and

(2.31)

∫

An

⋂
Bc

r

χ[s0,S0](
√
z2 + w2)dx ≤ |An ∩Bc

r | < δ0 ≤
ε

β0
, ∀n ∈ N.

Then from (2.20) and the fact Q(zn, wn) ≤M1, it yields that

(2.32)

∫

Bc
r

F (f(zn), f(wn))dx ≤ ε(M1 + 1), ∀n ∈ N, r > r0,

By Fatou’s lemma, we have for every r > r0,

(2.33)

∫

Bc
r

F (f(z), f(w))dx ≤ lim inf
n→∞

∫

Bc
r

F (f(zn), f(wn))dx ≤ ε(M1 + 1).

Therefore, we get (2.17) from (2.32) and (2.33). Then the application of (2.16)
and (2.17) yields the limit (2.13). Note that (f6) and

0 ≤ Fu(f(zn), f(wn))f
′(zn)zn, Fv(f(zn), f(wn))f

′(wn)wn ≤ dF (f(zn), f(wn)),

then, arguing as the above, we can conclude the limits (2.14) and (2.15). �

Lemma 2.5. Let (H1)-(H3) hold. If the sequence {(zn, wn)} satisfies (2.12),
then the following statements hold

(i) For any ε > 0, there exists r0 ≥ 1 such that r ≥ r0,

(2.34) lim sup
n→∞

∫

Bc

2r

[|∇zn|
2 + |∇wn|

2 + a(x)f2(zn) + b(x)f2(wn)]dx < ε.
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(ii)

(2.35) lim
n→∞

∫

RN

a(x)f(zn)f
′(zn)zndx =

∫

RN

a(x)f(z)f ′(z)zdx,

(2.36) lim
n→∞

∫

RN

b(x)f(wn)f
′(wn)wndx =

∫

RN

b(x)f(w)f ′(w)wdx,

and

(2.37) lim
n→∞

∫

RN

a(x)f2(zn − z)dx = 0, lim
n→∞

∫

RN

b(x)f2(wn − w)dx = 0.

(iii) The weak limit (z, w) ∈ E is a critical point for functional J.

Proof. (i) For r > 1, we choose the function ηr = ηr(|x|) ∈ C1(RN ) such that

ηr(|x|) ≡ 1, x ∈ Bc
2r, ηr(|x|) ≡ 0, x ∈ Br and 0 ≤ ηr ≤ 1, |∇ηr | ≤

2

r
in R

N .

(2.38)

Since the sequence {(zn, wn)} is bounded in E, the sequence {(ηrϕn, ηrψn)} is
also bounded in E, where ϕn, ψn are defined as in Lemma 3.1. Hence we have
J ′(zn, wn)(ηrϕn, ηrψn) = on(1) as n→ ∞, where

(2.39)

J ′(zn, wn)(ηrϕn, ηrψn)

=

∫

RN

[∇zn∇ϕn +∇wn∇ψn + a(x)f2(zn) + b(x)f2(wn)]ηrdx

+An(r) +Bn(r) + Cn(r)

with

(2.40)

An(r) = −
1

d

∫

RN

F (f(zn), f(wn))ηrdx,

Bn(r) =

∫

RN

(∇zn∇ηrϕn +∇wn∇ηrψn)dx,

Cn(r) = −

∫

RN

(h(x)f(zn) + g(x)f(wn))ηrdx.

Then it follows from (2.17) that

(2.41) lim
r→∞

An(r) = 0 uniformly in n ∈ N.

Similarly, for any n ∈ N, we have

|Bn(r)| ≤

∫

Ωr

(|∇zn||∇ηr||ϕn|+ |∇wn||∇ηr ||ψn|)dx(2.42)

≤
4

r

∫

Ωr

(|∇zn||zn|+ |∇wn||wn|)dx

≤
4

r
(‖∇zn‖2‖zn‖2 + ‖∇wn‖2‖wn‖2) ≤

8

r
M2 → 0 as r → ∞,
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where Ωr = Bc
r\B

c
2r. From Remark 2.2 we know

|Cn(r)| ≤

∫

Bc

2r

|h(x)f(zn) + g(x)f(wn)|dx(2.43)

≤ Ch‖h‖Lµ(Bc

2r
)‖zn‖

1/2
X + Cg‖h‖Lµ(Bc

2r
)‖wn‖

1/2
Y

≤ (Ch + Cg)
√
M‖h‖Lµ(Bc

2r
) → 0 as r → ∞.

Then we have∫

Bc

2r

[|∇zn|
2 + |∇wn|

2 + a(x)f2(zn) + b(x)f2(wn)]dx

≤

∫

RN

[∇zn∇ϕn +∇wn∇ψn + a(x)f2(zn) + b(x)f2(wn)]ηrdx

= An(r) +Bn(r) + Cn(r) + on(1).

(2.44)

This estimate concludes (2.34).
(ii) The limit (2.34) gives

(2.45)

∫

Bc

2r

a(x)f2(zn)dx < ε,

and consequently,

(2.46)

∫

Bc

2r

a(x)f2(z)dx < ε.

Since zn → z in L2(B2r), we get

(2.47) lim
n→∞

∫

B2r

a(x)f2(zn)dx =

∫

B2r

a(x)f2(z)dx.

Thus we have

(2.48) lim
n→∞

∫

RN

a(x)f2(zn)dx =

∫

RN

a(x)f2(z)dx.

Similarly, we get

(2.49) lim
n→∞

∫

RN

b(x)f2(wn)dx =

∫

RN

b(x)f2(w)dx.

Noting (f6) and arguing as the above, we can conclude the limits (2.35) and
(2.36).

Set φ(t) = f2(t), then φ′′(t) = 2(1 + 2f2(t))−2 > 0, and φ(t) is convex and
even in R. Hence, by (f9) we get

∫

Bc

2r

a(x)f2(zn − z)dx ≤
1

2

∫

Bc

2r

a(x)(f2(2zn) + f2(2z))dx(2.50)

≤ 2

∫

Bc

2r

a(x)(f2(zn) + f2(z))dx ≤ 2ε
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for large n. Since f2(zn − z) ≤ |zn − z|2 and zn → z in L2(B2r), we have

(2.51) lim
n→∞

∫

B2r

a(x)f2(zn − z)dx = 0.

Then

(2.52) lim
n→∞

∫

RN

a(x)f2(zn − z)dx = 0.

Similarly, we have

(2.53) lim
n→∞

∫

RN

b(x)f2(wn − w)dx = 0.

(iii) From (2.12), one sees that

(2.54) lim
n→∞

∫

RN

∇zn∇ϕdx =

∫

RN

∇z∇ϕdx ∀ϕ ∈ C∞

0 (RN ),

(2.55) lim
n→∞

∫

RN

∇wn∇ψdx =

∫

RN

∇w∇ψdx ∀ψ ∈ C∞

0 (RN ).

Then by Lebegsue dominated convergence theorem, it follows

(2.56) J ′(z, w)(ϕ, ψ) = lim
n→∞

J ′(zn, wn)(ϕ, ψ) = 0 ∀ϕ, ψ ∈ C∞

0 (RN ).

Since the set C∞
0 (RN ) × C∞

0 (RN ) is dense in E, we have J ′(z, w)(ϕ, ψ) = 0,
∀ϕ, ψ ∈ E. In particular, J ′(z, w)(z, w) = 0. Hence, (z, w) is a critical point of
J in E. This completes the proof of Lemma 2.5. �

Lemma 2.6. Let (H1)-(H3) hold. If {(zn, wn)} ⊂ E is a Cerami sequence

satisfies (2.12), then (zn, wn) → (z, w) in E, that is, the functional J satisfies

the Cerami condition in E.

Proof. By (2.12), we know

(2.57) lim
n→∞

∫

Br

h(x)f ′(zn)zndx =

∫

Br

h(x)f ′(z)zdx.

On the other hand, we see from (2.12) and Remark 2.2 that
(2.58)∫

Bc
r

|h(x)f ′(zn)zn|dx ≤

∫

Bc
r

|h(x)f(zn)|dx ≤ Ch‖h‖Lµ(Bc
r
)M

1/2 → 0 as r → ∞,

and
(2.59)∫

Bc
r

|h(x)f ′(z)z|dx ≤

∫

Bc
r

|h(x)f(z)|dx ≤ Ch‖h‖Lµ(Bc
r
)M

1/2 → 0 as r → ∞.

Thus we get

(2.60) lim
n→∞

∫

RN

h(x)f ′(zn)zndx =

∫

RN

h(x)f ′(z)zdx.
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Since J ′(zn, wn) → 0 in E∗ as n→ ∞ and (z, w) is a critical point of J , we
derive

on(1) = J ′(zn, wn)(zn, 0)

(2.61)

=

∫

RN

(|∇zn|
2 + a(x)f(zn)f

′(zn)zn)dx−

∫

RN

(Fu + h(x))f ′(zn)zndx,

and

0 = J ′(z, w)(z, 0)(2.62)

=

∫

RN

(|∇z|2 + a(x)f(z)f ′(z)z)dx−

∫

RN

(Fu + h(x))f ′(z)zdx.

Using the limits (2.14), (2.35) and (2.60) we obtain

(2.63) lim
n→∞

∫

RN

|∇zn|
2dx =

∫

RN

|∇z|2dx.

Similarly we get

(2.64) lim
n→∞

∫

RN

|∇wn|
2dx =

∫

RN

|∇w|2dx.

The application of Brezis-Lieb lemma in [3] yields

(2.65) lim
n→∞

‖∇(zn − z)‖22 = lim
n→∞

‖∇(wn − w)‖22 = 0.

As in the proof of (2.11), we see that

∫

RN

(|∇(zn − z)|2 + |∇(wn − w)|2 + a(x)f2(zn − z) + b(x)f2(wn − w))dx

≥ C0‖(zn − z, wn − w)‖E .

(2.66)

Then we get from (2.37) and (2.65) that (zn, wn) → (z, w) in E. This completes
the proof of Lemma 2.6.

�

3. Proof of main result

To prove our result, We will make use of the Mountain Pass Theorem in [2]
(see also [16]).

Lemma 3.1 (Mountain Pass Theorem). Let E be a real Banach space and

J ∈ C1(E,R) with J(0) = 0. Suppose J(u) satisfies Cerami condition and

(A1) there are ρ, α > 0 such that J(u) ≥ α when ‖u‖E = ρ,
(A2) there is e ∈ E, ‖e‖E > ρ such that J(e) < 0.
Define Γ = {γ ∈ C1([0, 1], E)|γ(0) = 0, γ(1) = e}. Then

c = inf
γ∈Γ

max
0≤t≤1

≥ α

is a critical value of J(u).
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Lemma 3.2. Assume (H1)-(H3). Then there exists m0 > 0 such that for

‖h‖µ, ‖g‖µ ≤ m0, J(z, w) defined by (2.3) satisfies the assumptions (A1), (A2)
in Lemma 3.1.

Proof. It follows from (H2) and (f7) that, there is a constant C3 > 0 such that

(3.1)

∫

RN

F (f(z), f(w))dx ≤ C3‖(z, w)‖
d/2
E .

Using Remark 2.2 we get∫

RN

|h(x)f(z) + g(x)f(w)|dx ≤ (ch‖h‖µ + cg‖g‖µ)‖(z, w)‖
1/2
E(3.2)

≤ ε‖(z, w)‖2E + Cε(‖h‖
4/3
µ + ‖g‖4/3µ )

with any small ε > 0, Cε = C(ε) > 0. Thus it follows by (2.11) that

J(z, w) ≥
C0

2
‖(z, w)‖2E − C3‖(z, w)‖

d/2
E − ε‖(z, w)‖2E − Cε(‖h‖

4/3
µ + ‖g‖4/3µ ).

(3.3)

Fix ε ≤ C0

4 , then 2 < d/2 implies that, there exist m0, ρ, α > 0 such that

J(u) ≥ α with ‖z, w‖E = ρ and ‖h‖µ, ‖g‖µ ≤ m0 for each h, g ∈ Lµ(RN ). (A1)
in Lemma 3.1 is true.

We now verify (A2). Fix (z, w) ∈ E with z 6≡ 0, w 6≡ 0 and z, w ≥ 0. Set

(3.4) Ωt = {x ∈ R
N |tz(x) ≥ 1, tw(x) ≥ 1}.

Choose large t0 > 0 such that
∫
Ωt

F (
√
z,
√
w)dx > 0 for t > t0. Using (H2)

and (f8) we have
(3.5)∫

Ωt

F (f(tz), f(tw))dx ≥

∫

Ωt

F (C
√
tz, C

√
tw)dx = Cdtd/2

∫

Ωt

F (
√
z,
√
w)dx.

Then, by (f9) we see that for t > t0

J(tz, tw) ≤
t2

2
‖(z, w)‖2E − Cdtd/2

∫

Ωt

F (
√
z,
√
w)dx

+ (t+ 1)

∫

RN

(|h(x)f(z)|+ |g(x)f(w)|)dx

(3.6)

and J(tz, tw) → −∞ as t → ∞ since 2 < d/2. Therefore, there exists t1
large enough, such that J(t1z, t1w) < 0 and (A2) in Lemma 3.1 is true. This
completes the proof of Lemma 3.2. �

Proof of Theorem 1.3. By Lemma 2.6 and Lemma 3.2, J(z, w) satisfies all as-
sumptions in Lemma 3.1. Then there exists (z1, w1) ∈ E such that (z1, w1) is
a solution of (1.4). Furthermore, J(z1, w1) ≥ α > 0.

We now seek another solution. Choose ϕ, ψ ∈ C∞
0 (RN ) such that

(3.7)

∫

RN

(h(x)ϕ + g(x)ψ)dx > 0.
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Then, by (f8) it follows that, for small t > 0

(3.8) J(tϕ, tψ) ≤
t2

2
‖(ϕ, ψ)‖2E − Ct

∫

RN

(h(x)ϕ + g(x)ψ)dx < 0.

So, for any open ball Bτ ⊂ E we have

(3.9) −∞ < cτ = inf
Bτ

J(z, w) < 0.

Thus,

(3.10) cρ = inf
Bρ

J(z, w) < 0 and inf
∂Bρ

J(z, w) > 0

where ρ > 0 is given in Lemma 3.2. Let εn → 0 such that

(3.11) 0 < εn < inf
∂Bρ

J(z, w)− inf
Bρ

J(z, w).

Then, by Ekelands variational principle in [17], there exists {zn, wn} ⊂ Bρ such
that

(3.12) cρ ≤ J(zn, wn) < cρ + εn

and
(3.13)
J(zn, wn) < J(z, w)+εn‖(zn−z, wn−w)‖E , ∀(z, w) ∈ Bρ, (z, w) 6= (zn, wn).

Then it follows that

(3.14) J(zn, wn) < cρ + εn ≤ inf
Bρ

J(z, w) + εn < inf
∂Bρ

J(z, w),

so that (zn, wn) ∈ Bρ. We now consider the functional F : Bρ → R given by

(3.15) F (z, w) = J(z, w) + εn‖(zn − z, wn − w)‖E , (z, w) ∈ Bρ.

Then (3.13) shows that F (zn, wn) < F (z, w), (z, w) ∈ Bρ, (z, w) 6= (zn, wn)
and thus (zn, wn) is a strict local minimum of F . Moreover,
(3.16)
1

t
(F (zn + tz′, wn + tw′)− F (zn, wn)) ≥ 0 for small t > 0 and ∀(z′, w′) ∈ B1.

Hence,

(3.17)
1

t
(J(zn + tz′, wn + tw′)− J(zn, wn)) + εn‖(z

′, w′)‖E ≥ 0.

Passing to the limit as t→ 0+, it follows that

(3.18) J ′(zn, wn)(z
′, w′) + εn‖(z

′, w′)‖E ≥ 0, ∀(z′, w′) ∈ B1.

Replacing (z′, w′) by (−z′,−w′), we get

(3.19) −J ′(zn, wn)(z
′, w′) + εn‖(z

′, w′)‖E ≥ 0, ∀(z′, w′) ∈ B1.

So that ‖J ′(zn, wn)‖ ≤ εn.
Therefore, there is a sequence {zn, wn} ⊂ Bρ such that J(zn, wn) → cρ <

0, and J ′(zn, wn) → 0 in E∗. By Lemma 2.6, {zn, wn} has a convergent
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subsequence in E, still denoted by {zn, wn}, such that (zn, wn) → (z2, w2) in
E. Thus (z2, w2) is a solution of (1.4) with J(z2, w2) < 0. Then the proof of
Theorem 1.3 is completed. �

Acknowledgments. The authors would like to express their sincere gratitude
to the anonymous reviewers for the valuable comments and suggestions.

References

[1] C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear

Schrödinger equations with potential vanishing at infinity, J. Differential Equations 254
(2013), no. 4, 1977–1991.

[2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory

and applications, J. Funct. Anal. 14 (1973), 349–381.
[3] H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and

convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490.
[4] C. S. Chen, Multiple solutions for a class of quasilinear Schrödinger equations in R

N ,
J. Math. Phys. 56 (2015), no. 7, 071507, 14 pp.

[5] C. S. Chen, J. Huang, and L. Liu, Multiple solutions to the nonhomogeneous p-Kirchhoff

elliptic equation with concave-convex nonlinearities, Appl. Math. Lett. 26 (2013), no.
7, 754–759.

[6] M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual

approach, Nonlinear Anal. 56 (2004), no. 2, 213–226.
[7] X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation,

J. Differential Equations 254 (2013), no. 4, 2015–2032.
[8] Y. Guo and Z. Tang, Ground state solutions for quasilinear Schrödinger systems, J.

Math. Anal. Appl. 389 (2012), no. 1, 322–339.
[9] S. Kurihura, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan 50

(1981), 3262–3267.
[10] E. W. Laedke, K. H. Spatschek, and L. Stenflo, Evolution theorem for a class of perturbed

envelope soliton solutions, J. Math. Phys. 24 (1983), no. 12, 2764–2769.
[11] J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations I,

Proc. Amer. Math. Soc. 131 (2003), no. 2, 441–448.
[12] J. Q. Liu, Y. Q. Wang, and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger

equation II, J. Differential Equations 187 (2003), no. 2, 473–493.

[13] J. M. Bezerra do Ó, O. H. Miyagaki, and S. H. M. Soares, Soliton solutions for quasi-

linear Schrödinger equations: the critical exponential case, Nonlinear Anal. 67 (2007),
no. 12, 3357–3372.

[14] M. Poppenberg, K. Schmitt, and Z. Q. Wang, On the existence of soliton solutions to

quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations 14 (2002),
no. 3, 329–344.

[15] U. Severo and E. da Silva, On the existence of standing wave solutions for a class of

quasilinear Schrödinger systems, J. Math. Anal. Appl. 412 (2014), no. 2, 763–775.
[16] M. Struwe, Variational Methods, third ed., Springer-Verlag, New York, 2000.
[17] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
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