LINEAR ISOMORPHISMS OF NON-DEGENERATE INTEGRAL TERNARY CUBIC FORMS

Inhwan Lee and Byeong-Kweon Oh

Abstract

In this article, we consider the problem on finding non-degenerate n-ary m-ic forms having an $n \times n$ matrix A as a linear isomorphism. We show that it is equivalent to solve a linear diophantine equation. In particular, we find all integral ternary cubic forms having A as a linear isomorphism, for any $A \in G L_{3}(\mathbb{Z})$. We also give a family of non-degenerate cubic forms F such that $F(\mathbf{x})=N$ always has infinitely many integer solutions if exists.

1. Introduction

A non-zero homogeneous polynomial

$$
\begin{aligned}
F(\mathbf{x}) & =F\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\sum_{\substack{e_{1}+\cdots+e_{n}=m \\
e_{i} \geq 0}} a_{e_{1}, \ldots, e_{n}} x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}, \quad\left(a_{e_{1}, \ldots, e_{n}} \in \mathbb{C}\right)
\end{aligned}
$$

is called an n-ary m-ic form. If $n=2,3$ or 4 , then F is called a binary, ternary or quaternary form, respectively, and if $m=2,3$ or 4 , then F is called a quadratic, cubic or quartic form, respectively. An n-ary m-ic form F is called degenerate if there is a k-ary $(k<n) m$-ic form G and a matrix $S=\left(s_{i j}\right) \in$ $M_{k n}(\mathbb{C})$ such that

$$
F(\mathbf{x})=G(S \mathbf{x})=G\left(s_{11} x_{1}+\cdots+s_{1 n} x_{n}, \ldots, s_{k 1} x_{1}+\cdots+s_{k n} x_{n}\right) .
$$

Hence any degenerate form is singular, that is, the projective variety $F=0$ on the projective space \mathbb{P}^{n-1} is singular. Note that a quadratic form is nonsingular if and only if it is non-degenerate.

An $n \times n$ matrix $A=\left(a_{i j}\right)$ satisfying

$$
F(A \mathbf{x}):=F\left(a_{11} x_{1}+\cdots+a_{1 n} x_{n}, \ldots, a_{n 1} x_{1}+\cdots+a_{n n} x_{n}\right)=F(\mathbf{x})
$$

Received October 29, 2015; Revised March 2, 2016.
2010 Mathematics Subject Classification. Primary 11E76, 15A63, 11D25.
Key words and phrases. linear isomorphisms, n-ary m-ic forms.
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0016437).
is called a linear isomorphism of F, and the group of all linear isomorphisms of F is denoted by $\operatorname{Lin}(F)$. Deciding this group for given non-degenerate n-ary m-ic form seems to be quite difficult problem even for quadratic form case. In 1880, Jordan proved in [4] that $\operatorname{Lin}(F)$ is finite if F is non-singular and $m \geq 3$ (see also [6], [8] and [9]).

Let F be an integral form, that is, $a_{e_{1}, \ldots, e_{n}} \in \mathbb{Z}$. We define

$$
\operatorname{Lin}_{\mathbb{Z}}(F):=\operatorname{Lin}(F) \cap M_{n}(\mathbb{Z})
$$

which is called the integral linear isomorphism group of F. If F is an integral quadratic form, it is well known that $\operatorname{Lin}_{\mathbb{Z}}(F)$ is finite if and only if F is definite. For the structures of integral linear isomorphism groups of some quadratic forms, see [10] for an indefinite case, and [5] for a definite case.

There is little known on this group for $m \geq 3$. In fact, finding an integral linear isomorphism is equivalent to solve a system of diophantine equations. Related with computing integral linear isomorphism group, one may naturally ask, for an $A \in M_{n}(\mathbb{Z})$, whether or not an n-ary m-ic form F exists such that $A \in \operatorname{Lin}_{\mathbb{Z}}(F)$. The answer of this question is completely known on the quadratic form case. In Theorem 1 of [3], Horn and Merino classified all possible types of Jordan canonical forms of the complex orthogonal matrix. What they proved is that a matrix A whose Jordan canonical form is one of five types given in the theorem is an automorphism of a non-singular quadratic form defined over the complex numbers. However one may easily deduce that there also exists a non-singular integral quadratic form satisfying the above property if A is an integral matrix.

For $m, n \geq 3$, solving the diophantine equation $F(\mathbf{x})=N$, for an integral form F and an integer N, is one of challenging problems in number theory. For example, as one of the simplest cases, it is not known whether or not the diophantine equation $x^{3}+y^{3}+z^{3}=33$ has an integer solution (see, for example, [2]).

If F is degenerate, then for any integer N, the equation $F(\mathbf{x})=N$ always has infinitely many integer solutions if exists. If \mathbf{x}_{0} is an integral solution of $F(\mathbf{x})=N$ for some integer N, then $A \mathbf{x}_{0}$ is also an integer solution for any $A \in \operatorname{Lin}_{\mathbb{Z}}(F)$. According to these two observations, it seems to be interesting problem to find a non-degenerate form having an integral linear isomorphism whose order is infinite.

In this article, we consider the problem on finding non-degenerate forms having A as a linear isomorphism, for any $n \times n$ matrix A. We show that this is equivalent to solve a linear diophantine equation. In particular, we find all integral ternary cubic forms having A as a linear isomorphism, for any invertible matrix $A \in M_{3}(\mathbb{Z})$. We also give a family of non-degenerate cubic forms F such that $F(\mathbf{x})=N$ always has infinitely many integer solutions if exists.

2. Linear isomorphisms of \boldsymbol{n}-ary \boldsymbol{m}-ic forms

For positive integers m and n, we define

$$
\mathfrak{D}_{m}^{n}:=\left\{\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}: \sum_{i=1}^{n} d_{i}=m, d_{i} \geq 0\right\}
$$

For two $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right), \mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathfrak{D}_{m}^{n}$, we define a lexicographic order $>$ by
$\mathbf{d}>\mathbf{e} \quad \Longleftrightarrow \quad$ there is an i such that $d_{k}=e_{k}$ for any $k<i$ and $d_{i}>e_{i}$.
For n indeterminates $x_{1}, x_{2}, \ldots, x_{n}$ and $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathfrak{D}_{m}^{n}$, we define a monomial $\mathbf{x}^{\mathbf{e}}=x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$ of degree m. Note that there is a one-to-one correspondence between the set of all monomials of degree m with n indeterminates and the set \mathfrak{D}_{m}^{n}. For an indeterminate vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$, we define an operator

$$
\mathfrak{U}_{m}^{n}(\mathbf{x}):=\left(\mathbf{x}^{\mathbf{e}_{1}}, \mathbf{x}^{\mathbf{e}_{2}}, \ldots, \mathbf{x}^{\mathbf{e}_{H(n, m)}}\right)^{t}
$$

where $\mathbf{e}_{1}>\mathbf{e}_{2}>\cdots>\mathbf{e}_{H(n, m)}$ are all elements in \mathfrak{D}_{m}^{n} and $H(n, m)$ is the combination with repetition.

For a matrix $A \in M_{n}(\mathbb{C})$, assume that $\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{t}=A\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$. Then for any $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathfrak{D}_{m}^{n}$, there are $a_{\mathbf{e}, \mathbf{d}} \in \mathbb{C}$ such that

$$
\mathbf{y}^{\mathbf{e}}=y_{1}^{e_{1}} y_{2}^{e_{2}} \cdots y_{n}^{e_{n}}=\sum_{\mathbf{d} \in \mathfrak{D}_{m}^{n}} a_{\mathbf{e}, \mathbf{d}} \mathbf{x}^{\mathbf{d}}
$$

Now we define $\mathfrak{U}_{m}^{n}(A):=\left(a_{\mathbf{e}_{i}, \mathbf{e}_{j}}\right) \in M_{H(n, m)}(\mathbb{C})$, where \mathbf{e}_{i} is the i-th element in \mathfrak{D}_{m}^{n} in the lexicographic order. Note that $\mathfrak{U}_{m}^{n}(\mathbf{y})=\mathfrak{U}_{m}^{n}(A) \mathfrak{U}_{m}^{n}(\mathbf{x})$.
Lemma 2.1. The map $\mathfrak{U}_{m}^{n}: G L_{n}(\mathbb{C}) \rightarrow G L_{H(n, m)}(\mathbb{C})$ is a multiplicative homomorphism. In particular, if a matrix $A \in M_{n}(\mathbb{C})$ is similar to B, then $\mathfrak{U}_{m}^{n}(A)$ is also similar to $\mathfrak{U}_{m}^{n}(B)$ for any positive integer m.

Proof. For any $A, B \in G L_{n}(\mathbb{C})$ and an indeterminate vector

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}
$$

note that

$$
\mathfrak{U}_{m}^{n}(A B) \mathfrak{U}_{m}^{n}(\mathbf{x})=\mathfrak{U}_{m}^{n}(A B \mathbf{x})=\mathfrak{U}_{m}^{n}(A) \mathfrak{U}_{m}^{n}(B \mathbf{x})=\mathfrak{U}_{m}^{n}(A) \mathfrak{U}_{m}^{n}(B) \mathfrak{U}_{m}^{n}(\mathbf{x})
$$

It is well known the set $\left\{\mathfrak{U}_{m}^{n}(\mathbf{x}): \mathbf{x} \in \mathbb{C}^{n}\right\}$ spans the vector space $\mathbb{C}^{H(n, m)}$. Therefore $\mathfrak{U}_{m}^{n}(A B)=\mathfrak{U}_{m}^{n}(A) \mathfrak{U}_{m}^{n}(B)$.
Lemma 2.2. For any $A \in M_{n}(\mathbb{C}), \operatorname{det}\left(\mathfrak{U}_{m}^{n}(A)\right)=\operatorname{det}(A)^{H(m, n)}$.
Proof. Note that the matrix A is similar to an upper-triangular matrix, that is, there is a $T \in G L_{n}(\mathbb{C})$ such that $A=T^{-1} U T$, where $U=\left(u_{i j}\right)$ is an uppertriangular matrix. For this upper-triangular matrix U, one may easily show that $\mathfrak{U}_{m}^{n}(U)$ is also upper-triangular and

$$
\mathfrak{U}_{m}^{n}(U)_{\mathbf{e}, \mathbf{e}}=u_{11}^{e_{1}} u_{22}^{e_{2}} \cdots u_{n n}^{e_{n}},
$$

where $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$. Therefore

$$
\operatorname{det}\left(\mathfrak{U}_{m}^{n}(A)\right)=\operatorname{det}\left(\mathfrak{U}_{m}^{n}(U)\right)=\operatorname{det}(U)^{f}
$$

where $H(n, m) \cdot m=n f$. Note that $f=\frac{m}{n} H(n, m)=H(m, n)$. The lemma follows from this.

For positive integers m and n, let

$$
\begin{equation*}
F_{m}(\mathbf{x})=F_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\mathbf{e} \in \mathfrak{D}_{m}^{n}} a_{\mathbf{e}} \mathbf{x}^{\mathbf{e}} \quad\left(a_{\mathbf{e}} \in \mathbb{C}\right) \tag{2.1}
\end{equation*}
$$

be an n-ary m-ic form. Recall that $\operatorname{Lin}\left(F_{m}\right)$ denotes the group of all linear isomorphisms of F_{m}. If a matrix A is similar to B with the transition matrix S, that is, $B=S^{-1} A S$, then one may easily show that

$$
\begin{equation*}
A \in \operatorname{Lin}\left(F_{m}\right) \quad \Longleftrightarrow \quad B \in \operatorname{Lin}\left(F_{m} \circ S\right) \tag{2.2}
\end{equation*}
$$

For the form F_{m} in (2.1), we define $\mathfrak{U}_{m}^{n}\left(F_{m}\right):=\left(a_{\mathbf{e}_{1}}, a_{\mathbf{e}_{2}}, \ldots, a_{\mathbf{e}_{H(n, m)}}\right)^{t} \in$ $\mathbb{C}^{H(n, m)}$.

Theorem 2.3. Let F_{m} be a form given in (2.1). Then $A \in \operatorname{Lin}\left(F_{m}\right)$ if and only if $\mathfrak{U}_{m}^{n}\left(F_{m}\right)$ is the eigenvector of $\mathfrak{U}_{m}^{n}(A)^{t}$ corresponding to the eigenvalue 1 .
Proof. Note that $F_{m}(\mathbf{x})=\mathfrak{U}_{m}^{n}\left(F_{m}\right)^{t} \cdot \mathfrak{U}_{m}^{n}(\mathbf{x})$. Hence

$$
\begin{aligned}
F_{m}(A \mathbf{x})=F_{m}(\mathbf{x}) & \Longleftrightarrow \mathfrak{U}_{m}^{n}\left(F_{m}\right)^{t} \cdot \mathfrak{U}_{m}^{n}(A \mathbf{x})=\mathfrak{U}_{m}^{n}\left(F_{m}\right)^{t} \cdot \mathfrak{U}_{m}^{n}(\mathbf{x}) \\
& \Longleftrightarrow \mathfrak{U}_{m}^{n}\left(F_{m}\right)^{t} \mathfrak{U}_{m}^{n}(A) \mathfrak{U}_{m}^{n}(\mathbf{x})=\mathfrak{U}_{m}^{n}\left(F_{m}\right)^{t} \cdot \mathfrak{U}_{m}^{n}(\mathbf{x}) .
\end{aligned}
$$

Therefore $\mathfrak{U}_{m}^{n}(A)^{t} \cdot \mathfrak{U}_{m}^{n}\left(F_{m}\right)=\mathfrak{U}_{m}^{n}\left(F_{m}\right)$. The theorem follows from this.
Let A be an $n \times n$ complex matrix and $f_{A}(x)$ be its characteristic polynomial. We define

$$
\mathfrak{U}_{m}^{n}\left(f_{A}\right)(x):=\prod_{\mathbf{e} \in \mathfrak{D}_{m}^{n}}\left(x-\mathbf{\Lambda}^{\mathbf{e}}\right)
$$

where $\boldsymbol{\Lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are all eigenvalues of A counting multiplicities. For the \mathbb{C}-vector space of n-ary m-ic forms

$$
\mathfrak{S}_{m}(A)=\left\{F_{m} \mid F_{m}(A \mathbf{x})=F_{m}(\mathbf{x})\right\}
$$

the dimension of $\mathfrak{S}_{m}(A)$ is denoted by $d_{m}(A)$.
Theorem 2.4. Under the assumptions given above, we have
(i) the characteristic polynomial of $\mathfrak{U}_{m}^{n}(A)$ is $\mathfrak{U}_{m}^{n}\left(f_{A}\right)(x)$;
(ii) there is an n-ary m-ic form F_{m} having A as a linear isomorphism if and only if $\mathfrak{U}_{m}^{n}\left(f_{A}\right)(1)=0$;
(iii) if A is diagonalizable, then $d_{m}(A)$ is the algebraic multiplicity of the eigenvalue one of $\mathfrak{U}_{m}^{n}(A)$;
(iv) if n divides m and $\operatorname{det}(A)^{\frac{m}{n}}=1$, then there is an n-ary m-ic form having A as a linear isomorphism, and
(v) if A is an integral matrix, then there is a basis for $\mathfrak{S}_{m}(A)$ consisting of integral forms.

Proof. Choose a matrix T such that $T A T^{-1}=U=\left(u_{i j}\right)$ is upper-triangular and $u_{i i}=\lambda_{i}(1 \leq i \leq n)$. For any $\mathbf{e} \in \mathfrak{D}_{m}^{n}$, note that $\mathfrak{U}_{m}^{n}(U)_{\mathbf{e}, \mathbf{f}}=0$ for any $\mathbf{f}<\mathbf{e}$ and $\mathfrak{U}_{m}^{n}(U)_{\mathbf{e}, \mathbf{e}}=\boldsymbol{\Lambda}^{\mathbf{e}}$. This implies that $\mathfrak{U}_{m}^{n}(U)$ is also upper-triangular and all of its eigenvalues are of the form $\boldsymbol{\Lambda}^{\mathbf{e}}$ for any $\mathbf{e} \in \mathfrak{D}_{m}^{n}$. Hence (i), (ii) and (iii) follow directly from Theorem 2.3. For (iv), note that $\mathfrak{U}_{m}^{n}(U)$ has an eigenvalue 1. Finally, assume that A is an integral matrix. Since

$$
\mathfrak{S}_{m}(A)=\left\{\mathbf{x} \in \mathbb{C}^{H(n, m)}: \mathfrak{U}_{m}^{n}(A)^{t}(\mathbf{x})=\mathbf{x}\right\}
$$

and $\mathfrak{U}_{m}^{n}(A)$ is also integral, there are integral vectors that spans $\mathfrak{S}_{m}(A)$.
Assume that $A \in S L_{n}(\mathbb{Z})$ and the characteristic polynomial $f_{A}(x)$ of A is a non-cyclotomic and irreducible polynomial. It is well known that A is a linear isomorphism of a non-degenerate integral quadratic form if and only if f_{A} is reciprocal, that is, $f_{A}(x)=x^{n} f_{A}\left(\frac{1}{x}\right)$ (see [3]). For a cubic case, we only have the following partial result.

Proposition 2.5. Under the assumptions given above, if the splitting field of $f_{A}(x)$ is abelian and n is not divisible by 3, then there does not exist an n-ary cubic form having A as a linear isomorphism.

Proof. Since $f_{A}(x)$ is not cyclotomic by assumption, any root of it is not a third root of unity. Suppose that $\alpha^{2} \beta=1$ for some roots α and β of $f_{A}(x)$. Since the Galois group of the splitting field of $f_{A}(x)$ acts on the set of roots transitively, there is a root δ of $f_{A}(x)$ such that $\beta^{2} \delta=1$. Hence $\delta=\alpha^{4}$ is also a root of $f_{A}(x)$. This implies that α is a root of unity, which is a contradiction. It was proved in [1] that any product of three roots of $f_{A}(x)$ is not one under the assumptions given above. Therefore we have $\mathfrak{U}_{3}^{n}\left(f_{A}\right)(1) \neq 0$. The proposition follows from Theorem 2.4(ii).

3. Linear isomorphisms of ternary cubic forms

Let $F_{m}(\mathbf{x})=F_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an n-ary m-ic form as in (2.1). We call F_{m} is reducible over \mathbb{C} if $F_{m}(\mathbf{x})=F_{k}(\mathbf{x}) \cdot F_{m-k}(\mathbf{x})$, where F_{k} and F_{m-k} are forms of degree k and $m-k$, respectively. If F_{m} is a product of m linear forms, then F_{m} is said to be completely reducible over \mathbb{C}. If the above forms F_{k} and F_{m-k} have integral coefficients, then we say that the integral form F_{m} is reducible over \mathbb{Z}.

For an n-ary m-ic form F_{m}, the Hessian matrix $H\left(F_{m}\right)$ of F_{m} is the square matrix defined by

$$
H\left(F_{m}\right)=\left[\begin{array}{cccc}
\frac{\partial^{2} F}{\partial x_{1}^{2}} & \frac{\partial^{2} F}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} F}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} F}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} F}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} F}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} F}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} F}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} F}{\partial x_{n}^{2}}
\end{array}\right]
$$

The determinant of $H\left(F_{m}\right)$ is denoted by $h\left(F_{m}\right)$. In general, $h\left(F_{m}\right)$ is the n-ary $n(m-2)$-ic form for any $m, n \geq 3$. If $G(\mathbf{x})=F_{m}(A \mathbf{x})$, then

$$
H(G)(\mathbf{x})=A^{t} \cdot H\left(F_{m}\right)(A \mathbf{x}) \cdot A \text { and } h(G)(\mathbf{x})=\operatorname{det}(A)^{2} h\left(F_{m}\right)(A \mathbf{x})
$$

Lemma 3.1. Let A be a 3×3 integral matrix such that $\operatorname{det}(A) \neq \pm 1$. If an integral cubic form F satisfies $F(A \mathbf{x})=F(\mathbf{x})$, then F is degenerate.

Proof. Note that F is degenerate if and only if $h(F)=0$ (see, for example, $[7])$. Suppose that there is a nonzero vector \mathbf{x}_{0} such that $h(F)\left(\mathbf{x}_{0}\right) \neq 0$. For a prime p dividing $\operatorname{det}(A)$, take an integer k such that $p^{2 k} \nmid h(F)\left(\mathbf{x}_{0}\right)$. Since $F\left(A^{k} \mathbf{x}\right)=F(\mathbf{x}), h(F)\left(\mathbf{x}_{0}\right)=\operatorname{det}(A)^{2 k} h(F)\left(A^{k} \mathbf{x}_{0}\right)$. This is a contradiction.

Let T be a matrix in $G L_{3}(\mathbb{Z})$. We apply our results obtained in the previous section to find all (non-degenerate) integral ternary cubic forms having the matrix T as a linear isomorphism. To find such form, we need to compute eigenvectors of $\mathfrak{U}_{3}^{3}(T)$ corresponding to the eigenvalue one. If we find a form having a matrix rationally similar to T as a linear isomorphism, we may easily find a form having T as a linear isomorphism by (2.2).

Let $f_{T}(x)\left(m_{T}(x)\right)$ be the characteristic (minimal, respectively) polynomial of T. First we assume that $T \in S L_{3}(\mathbb{Z})$ and $f_{T}(x)=x^{3}-s x^{2}-t x-1$ for some $s, t \in \mathbb{Z}$. Let α, β and γ be all roots of $f_{T}(x)$ counting multiplicities and let $\Delta_{f}=t^{2} s^{2}-4 s^{3}+4 t^{3}-18 t s-27$ be the discriminant of f_{T}. Suppose that f_{T} has a multiple root $\alpha \in \mathbb{C}$, that is, $\Delta_{f}=0$. Then one may easily show that $\alpha= \pm 1$. Hence f_{T} is $(x-1)^{3}$ or $(x-1)(x+1)^{2}$, which implies that $(s, t)=(3,-3)$ or $(-1,1)$. Note that these are all integral solutions of the diophantine equation $\Delta_{f}=0$.

Suppose that $\operatorname{deg}\left(m_{T}\right)=3$. Since T is rationally equivalent to its companion matrix, we may assume that $T=\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & t \\ 0 & 1 & s\end{array}\right]$. Note that the characteristic polynomial of 10×10 matrix $\mathfrak{U}_{3}^{3}(T)$ is of the form

$$
f_{\mathfrak{U}_{3}^{3}(T)}(x)=(x-1) g_{s, t}(x) h_{s, t}(x),
$$

where $g_{s, t}(x)$ is the monic polynomial of degree 3 with roots $\alpha^{3}, \beta^{3}, \gamma^{3}$, and $h_{s, t}(x)$ is the monic polynomial of degree 6 with roots $\alpha^{2} \beta, \alpha^{2} \gamma, \ldots, \beta \gamma^{2}$. Note that $g_{s, t}(1)=0$ if and only if $s=-t$, and $h_{s, t}(1)=0$ if and only if $\Delta_{f}=0$. The latter holds only when $(s, t)=(3,-3)$ or $(-1,1)$ as stated above.

Suppose that $s \neq-t$. Then T is diagonalizable and $d_{3}(T)=1$. In this case, we can take

$$
\begin{aligned}
F_{s, t}(x, y, z):= & x^{3}+s x^{2} y+\left(2 t+s^{2}\right) x^{2} z-t x y^{2}-(t s+3) x y z \\
& +\left(t^{2}-2 s\right) x z^{2}+y^{3}+s y^{2} z-t y z^{2}+z^{3} .
\end{aligned}
$$

as a generator of $\mathfrak{S}_{3}(T)$. Note that $F_{s, t}$ is non-degenerate and completely reducible over \mathbb{C}.

Now assume that $s=-t$. Then $f_{\mathfrak{U}_{3}^{3}(T)}(x)=(x-1)^{2} u(x) v(x) w(x)$, where $u(x)=x^{2}+x+1+2 s x-s^{2} x, v(x)=x^{2}-s^{3} x+3 s^{2} x-2 x+1, w(x)=x^{2}+x-s x+1$.

Hence, if $s=-t$ and $s \neq 0,-1,3$, then $d_{3}(T) \leq 2$. In fact, $d_{3}(T)=2$ in this case, and one may take a basis for $\mathfrak{S}_{3}(T)$ consisting of

$$
\begin{aligned}
& G_{1, s}(x, y, z):=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-(1+3 s) x z\right) \\
& G_{2, s}(x, y, z):=(x+y+z)(x y+y z+(1+s) x z)
\end{aligned}
$$

Note that $a G_{1, s}+b G_{2, s}$ is non-degenerate for any $a, b \in \mathbb{Z}$ with $b \neq 3 a$ and is reducible over \mathbb{Z}.

If $(s, t)=(0,0)$, then $f_{\mathfrak{U}_{3}^{3}(T)}(x)=(x-1)^{4}\left(x^{2}+x+1\right)^{3}$ and $d_{3}(T)=4$. We may take a basis for $\mathfrak{S}_{3}(T)$ consisting of

$$
x^{3}+y^{3}+z^{3}, x^{2} y+x z^{2}+y^{2} z, x^{2} z+x y^{2}+y z^{2}, x y z .
$$

If $(s, t)=(-1,1)$, then $f_{\mathfrak{U}_{3}^{3}(T)}(x)=(x-1)^{4}(x+1)^{6}$ and $d_{3}(T)=2$. Note that $G_{1,-1}(x, y, z)$ and $G_{2,-1}(x, y, z)$ form a basis for $\mathfrak{S}_{3}(T)$. In this case, $a G_{1,-1}+b G_{2,-1}$ is degenerate for any $a, b \in \mathbb{Z}$.

If $(s, t)=(3,-3)$, then $f_{\mathfrak{U}_{3}^{3}(T)}(x)=(x-1)^{10}$ and $d_{3}(T)=2$. Note that $G_{1,3}(x, y, z)$ and $G_{2,3}(x, y, z)$ form a basis for $\mathfrak{S}_{3}(T)$. In this case, $a G_{1,3}+b G_{2,3}$ is non-degenerate for any $a, b \in \mathbb{Z}$ with $b \neq 3 a$.

Now suppose that $\operatorname{deg}\left(m_{T}\right)<3$. In this case, f_{T} must have a multiple root. Hence $(s, t)=(3,-3)$ or $(-1,1)$, i.e., $f_{T}(x)=(x-1)^{3}$ or $(x-1)(x+1)^{2}$.

If $f_{T}(x)=(x-1)^{3}$, then $m_{T}(x)=x-1$ or $(x-1)^{2}$. The former case implies that $T=I$, which is a linear isomorphism of any cubic form. Assume that $m_{T}(x)=(x-1)^{2}$. Since T is rationally similar to its Jordan canonical form, we may assume that $T=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$. By a direct computation, we have $f_{\mathfrak{U}_{3}^{3}(T)}(x)=(x-1)^{10}$ and $d_{3}(T)=4$. Every cubic form in $\mathfrak{S}_{3}(T)$ is of the form

$$
a x^{3}+b x^{2} z+c x z^{2}+d z^{3}
$$

which is degenerate for arbitrary integers a, b, c, d.
If $f_{T}(x)=(x-1)(x+1)^{2}$ and $m_{T}(x)=(x-1)(x+1)$, then we assume that $T=\operatorname{diag}(1,-1,-1)$. By a direct computation, we have $f_{\mathfrak{u}_{3}^{3}(T)}(x)=$ $(x-1)^{4}(x+1)^{6}$ and $d_{3}(T)=4$. Furthermore every cubic form in $\mathfrak{S}_{3}(T)$ is of the form

$$
a x^{3}+b x y^{2}+c x y z+d x z^{2}
$$

which is non-degenerate for any integers a, b, c, d with $4 b d-c^{2} \neq 0$, and is reducible over \mathbb{Z}.

Now assume that $\operatorname{det}(T)=-1$ and $f_{T}(x)=x^{3}-s x^{2}-t x+1$. By using similar method in the above, one may easily show that the cases when there is a non-degenerate form having T as a linear isomorphism are $(s, t)=(-1,-1)$, or $(s, t)=(1,1)$ and $m_{T}(x)=(x+1)(x-1)$. In the former case, $d_{3}(T)=2$ and every cubic form in $\mathfrak{S}_{3}(T)$ is of the form

$$
a(x-y+z)\left(x^{2}-y^{2}+z^{2}-x y+y z-2 x z\right)+b y(x-z)(x-y+z)
$$

and in the latter case, $d_{3}(T)=6$ and every cubic form in $\mathfrak{S}_{3}(T)$ is of the form

$$
a x^{3}+b x^{2} y+c x y^{2}+d x z^{2}+e y^{3}+f y z^{2} .
$$

Summing up all, we have the following theorem.
Theorem 3.2. Let $T \in G L_{3}(\mathbb{Z})$ and let $f_{T}(x)=x^{3}-s x^{2}-t x-\operatorname{det}(T)$ be the characteristic polynomial of T. If $\operatorname{det}(T)=1$, then there is a non-degenerate integral ternary cubic form having T as a linear isomorphism except the cases when $(s, t)=(-1,1)$ and $m_{T}(x)=(x-1)(x+1)^{2}$, or $(s, t)=(3,-3)$ and $m_{T}(x)=(x-1)^{2}$. If $\operatorname{det}(T)=-1$, then there is a non-degenerate integral ternary cubic form having T as a linear isomorphism if and only if $(s, t)=$ $(-1,-1)$, or $(s, t)=(1,1)$ and $m_{T}(x)=(x-1)(x+1)$.
Corollary 3.3. Let $T \in G L_{3}(\mathbb{Z})$ be a matrix having infinite order and let F be an integral ternary cubic form such that $F(T \mathbf{x})=F(\mathbf{x})$. Define
$R(F):=\left\{N \in \mathbb{Z} \mid F(\mathbf{x})=N\right.$ has an integer solution \mathbf{x}_{0} such that $\left.T \mathbf{x}_{0} \neq \mathbf{x}_{0}\right\}$. Then for any integer $N \in R(F)$, the diophantine equation $F(\mathbf{x})=N$ has infinitely many integer solutions. In particular, if $s \neq-t$, then $F_{s, t}(x, y, z)=N$ always has infinitely many integer solutions for any integer N if exists.
Proof. Let $f_{T}(x)=x^{3}-s x^{2}-t x-\operatorname{det}(T)$ be the characteristic polynomial of T. We may assume that F is non-degenerate. Since we are assuming that the order of T is infinite, we may further assume that $\operatorname{det}(T)=1$ and $m_{T}(x)=f_{T}(x)$. Assume that $F\left(\mathbf{x}_{0}\right)=N$ for some integral vector \mathbf{x}_{0} which is not an eigenvector of T corresponding to the eigenvalue one. Since $F\left(T^{m} \mathbf{x}_{0}\right)=N$ for any integer m, it is enough to show that $T^{u}\left(\mathbf{x}_{0}\right) \neq T^{v}\left(\mathbf{x}_{0}\right)$ for any $u \neq v$. Suppose that $T^{k} \mathbf{x}_{0}=\mathbf{x}_{0}$ for some integer k. Then T has a root of unity not equal to one as an eigenvalue. Therefore, the only possible candidate of (s, t) is $(3,-3)$. However, in this case, one may easily show that \mathbf{x}_{0} should be an eigenvector of T corresponding to the eigenvalue one by a direct computation. This is a contradiction. Finally, note that if $s \neq-t$, then the matrix T does not have an eigenvalue one.

Remark 3.4. Under the same assumptions as above, the number of solutions for the diophantine equation $F(\mathbf{x})=N$ is one of 0,1 or ∞, for any integer N.
Remark 3.5. In the above corollary, if $F\left(\mathbf{x}_{0}\right)=N$ for some eigenvector \mathbf{x}_{0} of T corresponding to the eigenvalue one, then $F(\mathbf{x})=N$ could have exactly one integer solution. For example, if

$$
T=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -4 \\
0 & 1 & 4
\end{array}\right] \quad \text { and } \quad G_{2,4}(x, y, z)=(x+y+z)(x y+y z+5 z x)
$$

then the equation $G_{2,4}(x, y, z)=1$ has only one solution $(1,-3,1)$, which is an eigenvector of T corresponding to the eigenvalue one.

References

[1] M. Drmota and M. Skalba, Relations between polynomial roots, Acta Arith. 71 (1995), no. 1, 65-77.
[2] A. Elsenhans and J. Jahnel, New sum of three cubes, Math. Comp. 78 (2009), no. 266, 1227-1230.
[3] R. A. Horn and D. I. Merino, The Jordan canonical forms of complex orthogonal and skew-symmetric matrices, Linear Algebra Appl. 302/303 (1999), 411-421.
[4] C. Jordan, Memore sur l'equivalence des formes, J. Ec. Pol. XLVIII (1880), 112-150.
[5] M.-H. Kim and B.-K. Oh, Generation of isometries of certain \mathbb{Z}-lattices by symmetries, J. Number Theory 83 (2000), no. 1, 76-90.
[6] H. Matsumura and P. Monsky, On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3 (1964), 347-361.
[7] P. J. Olver, Classical Invariant Theory, London Mathematical Society Student Texts, Vol. 44, 1999.
[8] J. E. Schneider, Orthogonal groups of nonsingular forms of higher degree, J. Algebra 27 (1973), 112-116.
[9] H. Suzuki, Automorphism groups of multilinear maps, Osaka J. Math. 20 (1983), no. 3, 659-673.
[10] E. B. Vinberg, The groups of units of certain quadratic forms, (Russian) Mat. Sb. (N.S.) 87(129) (1972), 18-36.

Inhwan Lee
Department of Mathematical Sciences
Seoul National University
Seoul 151-747, Korea
E-mail address: lih0905@snu.ac.kr
Byeong-Kweon Oh
Department of Mathematical Sciences and Research Institute of Mathematics Seoul National University
Seoul 151-747, Korea
E-mail address: bkoh@snu.ac.kr

