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LINEAR ISOMORPHISMS OF NON-DEGENERATE
INTEGRAL TERNARY CUBIC FORMS

INHWAN LEE AND BYEONG-KWEON OH

ABSTRACT. In this article, we consider the problem on finding non-degen-
erate n-ary m-ic forms having an n X n matrix A as a linear isomorphism.
We show that it is equivalent to solve a linear diophantine equation. In
particular, we find all integral ternary cubic forms having A as a linear iso-
morphism, for any A € GL3(Z). We also give a family of non-degenerate
cubic forms F such that F(x) = N always has infinitely many integer
solutions if exists.

1. Introduction

A non-zero homogeneous polynomial

F(x)=F(x1,22,...,2Zn)

— €1 .62 €n
- E Qey,...,en Tl Tg " Ty, (aelq---yen € (C)

et ten=m
e;>0

is called an n-ary m-ic form. If n = 2,3 or 4, then F is called a binary,
ternary or quaternary form, respectively, and if m = 2,3 or 4, then F is called
a quadratic, cubic or quartic form, respectively. An n-ary m-ic form F' is called
degenerate if there is a k-ary (k < n) m-ic form G and a matrix S = (s;5) €
M3, (C) such that

F(x) =G(Sx) = G(s1121 + -+ S1nTny - -, Sk121 + -+ - + Sknn).

Hence any degenerate form is singular, that is, the projective variety F' = 0
on the projective space P"~! is singular. Note that a quadratic form is non-
singular if and only if it is non-degenerate.

An n x n matrix A = (a;;) satisfying

F(Ax) :=F(a1121+ 4+ @1n&ny -« o, Gn1&1 + - -+ + Gppyn) = F(X)
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1698 I. LEE AND B.-K. OH

is called a linear isomorphism of F', and the group of all linear isomorphisms
of F is denoted by Lin(F'). Deciding this group for given non-degenerate n-ary
m-ic form seems to be quite difficult problem even for quadratic form case. In
1880, Jordan proved in [4] that Lin(F) is finite if F' is non-singular and m > 3
(see also [6], [8] and [9]).

Let F' be an integral form, that is, ae,,... ., € Z. We define

Lingz(F) := Lin(F) N M, (Z),

which is called the integral linear isomorphism group of F. If F is an integral
quadratic form, it is well known that Ling (F') is finite if and only if F' is definite.
For the structures of integral linear isomorphism groups of some quadratic
forms, see [10] for an indefinite case, and [5] for a definite case.

There is little known on this group for m > 3. In fact, finding an integral
linear isomorphism is equivalent to solve a system of diophantine equations.
Related with computing integral linear isomorphism group, one may naturally
ask, for an A € M,,(Z), whether or not an n-ary m-ic form F' exists such that
A € Ling(F). The answer of this question is completely known on the quadratic
form case. In Theorem 1 of [3], Horn and Merino classified all possible types of
Jordan canonical forms of the complex orthogonal matrix. What they proved
is that a matrix A whose Jordan canonical form is one of five types given in
the theorem is an automorphism of a non-singular quadratic form defined over
the complex numbers. However one may easily deduce that there also exists
a non-singular integral quadratic form satisfying the above property if A is an
integral matrix.

For m,n > 3, solving the diophantine equation F(x) = N, for an integral
form F' and an integer IV, is one of challenging problems in number theory.
For example, as one of the simplest cases, it is not known whether or not the
diophantine equation 23 +y3+23 = 33 has an integer solution (see, for example,
2)).

If F is degenerate, then for any integer N, the equation F(x) = N always
has infinitely many integer solutions if exists. If xq is an integral solution of
F(x) = N for some integer N, then Ax( is also an integer solution for any
A € Ling(F). According to these two observations, it seems to be interesting
problem to find a non-degenerate form having an integral linear isomorphism
whose order is infinite.

In this article, we consider the problem on finding non-degenerate forms
having A as a linear isomorphism, for any n x n matrix A. We show that
this is equivalent to solve a linear diophantine equation. In particular, we
find all integral ternary cubic forms having A as a linear isomorphism, for any
invertible matrix A € M3(Z). We also give a family of non-degenerate cubic
forms F such that F(x) = N always has infinitely many integer solutions if
exists.
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2. Linear isomorphisms of n-ary m-ic forms

For positive integers m and n, we define

O, o= {(d1,da,...,dp) €Z" Y d; =m, d; >0}.
i=1
For two d = (d1,ds,...,d,), e = (e1,€ea,...,e,) € D", we define a lexico-
graphic order > by

d>e <= thereis an i such that dy = ey for any k£ < i and d; > e;.

For n indeterminates x1,x3,...,z, and e = (e1,ea,...,e,) € D" we define
a monomial x® = z{'z3? - - - 2 of degree m. Note that there is a one-to-one
correspondence between the set of all monomials of degree m with n indeter-
minates and the set D7 . For an indeterminate vector x = (z1, 2, ...,1,)", we
define an operator

UM (x) = (x°,x°2, ..., xCH0m)E
where €1 > €2 > -+ > ep(p,m) are all elements in D7, and H(n,m) is the

combination with repetition.
For a matrix A € M,,(C), assume that (y1,ys,...,9yn)’ = A(x1,22,...,2,)%.

Then for any e = (eq, ez, ...,e,) € D, there are ae,q € C such that
Yo =yiyst oy = ) aeax?
deDn,

Now we define U} (A) := (de;,e;) € Mp(n,m)(C), where e; is the i-th element
in ©7 in the lexicographic order. Note that 7 (y) = U7 (A)U? (x).

Lemma 2.1. The map 43}, : GL,(C) = GLE(5,m)(C) is a multiplicative ho-
momorphism. In particular, if a matriv A € M, (C) is similar to B, then
T (A) is also similar to Ul (B) for any positive integer m.

Proof. For any A, B € GL,(C) and an indeterminate vector
X = (21,T2,...,2,)",
note that
U (AB)UY (x) = L (ABx) = U5 (A)LU) (Bx) = 45 (A)UR (B (x).

It is well known the set {LJ.”( ) : x € C"} spans the vector space CH (™),
Therefore U7 (AB) = U2, (A)U? (B). O

Lemma 2.2. For any A € M, (C), det(? (A)) = det(A)H ™),

Proof. Note that the matrix A is similar to an upper-triangular matrix, that
is, there is a T € GL,,(C) such that A =T~1UT, where U = (u;;) is an upper-
triangular matrix. For this upper-triangular matrix U, one may easily show
that 87 (U) is also upper-triangular and

uZm(U)e,e = ugjus3 - Uy

nn?
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where e = (e1, e, ...,e,). Therefore
det(U” (A)) = det(U?, (U)) = det(U)7,
where H(n,m)-m = nf. Note that f = ™ H(n,m) = H(m,n). The lemma

follows from this. (]

For positive integers m and n, let
(2.1) Fn(X) = Fp(21,72,...,20) = Y aex®  (ae € C)
ecDn,

be an n-ary m-ic form. Recall that Lin(F,,) denotes the group of all linear
isomorphisms of F,,. If a matrix A is similar to B with the transition matrix
S, that is, B = S~'AS, then one may easily show that

(2.2) A€ Lin(F,,) <= BelLlin(F,oS5).
For the form F,, in (2.1), we define U (F) = (de,;Geys-- -5 Geg i m) €
(CH(n,m)_

Theorem 2.3. Let F,, be a form given in (2.1). Then A € Lin(F,,) if and
only if U7 (F,) is the eigenvector of UT (A) corresponding to the eigenvalue 1.

Proof. Note that F,(x) = {2 (F,)! - 47 (x). Hence

Fn(Ax) = F(x) <= 40, (Fn)" - 47, (Ax) = U3 (Fn)" - 407, (%)
= 80 (Fn) U5, (AU, (%) = U5, (Fm)" - 8477, ().

Therefore U (A) - U (F,,) = U (F,,). The theorem follows from this. O

Let A be an nxn complex matrix and f4(z) be its characteristic polynomial.

We define
r(fa)@) = ] (@—A°),
ec®n,
where A = (A1, Aa, ..., An) and A, Mg, ..., A\, are all eigenvalues of A counting

multiplicities. For the C-vector space of n-ary m-ic forms
Gin(A4) = {Fn | Fn(Ax) = F(x)},
the dimension of &,,(A) is denoted by d,, (A).

Theorem 2.4. Under the assumptions given above, we have
(i) the characteristic polynomial of UZ (A) is % (fa)(z);
(i) there is an n-ary m-ic form F,, having A as a linear isomorphism if
and only if U7 (fa)(1) = 0;
(iii) if A is diagonalizable, then d,(A) is the algebraic multiplicity of the
eigenvalue one of U (A);
(iv) if n divides m and det(A)™ = 1, then there is an n-ary m-ic form
having A as a linear isomorphism, and
(v) if A is an integral matriz, then there is a basis for &,,(A) consisting
of integral forms.
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Proof. Choose a matrix T" such that TAT~! = U = (u;;) is upper-triangular
and u; = A (1 <4 <mn). For any e € D, note that {7 (U)er = 0 for any
f < eand U (U)ee = A°. This implies that U7 (U) is also upper-triangular
and all of its eigenvalues are of the form A® for any e € ©7,. Hence (i), (ii)
and (iii) follow directly from Theorem 2.3. For (iv), note that 4 (U) has an

eigenvalue 1. Finally, assume that A is an integral matrix. Since
Gm(A) = {x e CHM™ . (n (4)(x) = x}
and U (A) is also integral, there are integral vectors that spans &,,,(4). O

Assume that A € SL,(Z) and the characteristic polynomial f4(z) of A is a
non-cyclotomic and irreducible polynomial. It is well known that A is a linear
isomorphism of a non-degenerate integral quadratic form if and only if f4 is
reciprocal, that is, fa(z) = 2™ fa() (see [3]). For a cubic case, we only have
the following partial result.

Proposition 2.5. Under the assumptions given above, if the splitting field of
fa(x) is abelian and n is not divisible by 3, then there does not exist an n-ary
cubic form having A as a linear isomorphism.

Proof. Since fa(x) is not cyclotomic by assumption, any root of it is not a
third root of unity. Suppose that a?3 = 1 for some roots o and 3 of fa(z).
Since the Galois group of the splitting field of f4(x) acts on the set of roots
transitively, there is a root § of f4(x) such that 326 = 1. Hence § = o is also a
root of f4(z). This implies that « is a root of unity, which is a contradiction. It
was proved in [1] that any product of three roots of f4(z) is not one under the
assumptions given above. Therefore we have 5 (f4)(1) # 0. The proposition
follows from Theorem 2.4(ii). O

3. Linear isomorphisms of ternary cubic forms

Let Fp,(x) = Fpp(21,22,...,2,) be an n-ary m-ic form as in (2.1). We call
F,, is reducible over C if F,,(x) = Fy(x) - Fyp—r(x), where Fy and F,,_j are
forms of degree k and m — k, respectively. If F,, is a product of m linear
forms, then F, is said to be completely reducible over C. If the above forms
Fy and F,,,_x have integral coefficients, then we say that the integral form F,,
is reducible over Z.

For an n-ary m-ic form F,,, the Hessian matrix H(F},) of F,, is the square
matrix defined by

*’F ’F o o’F
61% Ox10xo 010,
*F °F L o’F
20 02 20
H(Fm) — 20T x5 T20Tn,
3*F 3*F *F

drn,0r1 Oxn0z2 oz

3N
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The determinant of H(F,) is denoted by h(F,,). In general, h(F,,) is the
n-ary n(m — 2)-ic form for any m,n > 3. If G(x) = F,,(Ax), then

H(G)(x) = At - H(F,)(Ax) - A and h(G)(x) = det(A)2h(Fy)(Ax).

Lemma 3.1. Let A be a 3 x 3 integral matriz such that det(A) # £1. If an
integral cubic form F satisfies F(Ax) = F(x), then F is degenerate.

Proof. Note that F is degenerate if and only if h(F) = 0 (see, for example,
[7]). Suppose that there is a nonzero vector xo such that h(F)(xo) # 0. For
a prime p dividing det(A), take an integer k such that p?* { h(F)(x0). Since
F(AFx) = F(x), h(F)(x0) = det(A)?*h(F)(A*xo). This is a contradiction. [J

Let T be a matrix in GL3(Z). We apply our results obtained in the previous
section to find all (non-degenerate) integral ternary cubic forms having the
matrix T as a linear isomorphism. To find such form, we need to compute
eigenvectors of U3(7T') corresponding to the eigenvalue one. If we find a form
having a matrix rationally similar to 7" as a linear isomorphism, we may easily
find a form having T as a linear isomorphism by (2.2).

Let fr(xz)(mz(z)) be the characteristic (minimal, respectively) polynomial
of T'. First we assume that 7' € SL3(Z) and fr(z) = 23 — sx® —tx — 1 for some
s,t € Z. Let «, B and v be all roots of fr(z) counting multiplicities and let
Ay = t25% — 453+ 413 — 18ts—27 be the discriminant of f7. Suppose that fr has
a multiple root a € C, that is, Ay = 0. Then one may easily show that oo = £1.
Hence fr is (z —1)3 or (z — 1)(x + 1)?, which implies that (s,t) = (3,-3) or
(—=1,1). Note that these are all integral solutions of the diophantine equation
Ay =0.

Suppose that deg(my) = 3. Since T is rationally equivalent to its compan-
ion matrix, we may assume that T = [g § ﬂ Note that the characteristic

polynomial of 10 x 10 matrix $43(7) is of the form
fug(T) (z) = (x = 1)gs,t(@) hst (),

where g5 ¢(x) is the monic polynomial of degree 3 with roots a3, 83,43, and
hs +(x) is the monic polynomial of degree 6 with roots a3, a7, ..., 37?. Note
that gs+(1) = 0 if and only if s = —¢, and h, (1) = 0 if and only if Ay = 0.
The latter holds only when (s,t) = (3, —3) or (—1,1) as stated above.

Suppose that s # —t. Then T is diagonalizable and d3(7T") = 1. In this case,
we can take

Foi(z,y,2) = 2 + sz?y + (2t + s%)a?z — toy® — (ts + 3)ayz
+ (1% — 28)x2% + 9 + sy’z — tyz? + 25

as a generator of &3(7"). Note that F,, is non-degenerate and completely
reducible over C.

Now assume that s = —t. Then fysr)(2) = (z — 1)*u(z)v(z)w(r), where
u(x) = 22 +r+1+2s2—s%r, v(z) = 2?2 —s30+3s%r—22+1, w(x) = v?+r—sr+1.
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Hence, if s = —t and s # 0, —1,3, then ds(T) < 2. In fact, ds(T) = 2 in this
case, and one may take a basis for G3(T") consisting of
Gis(w,y,2) = (w+y+2)(@® +y° +2° —ay — yz — (1 + 3s)az),
Gos(z,y,2) == (x +y+2)(zy + yz + (1 + s)xz).
Note that aG1 s + bG35 is non-degenerate for any a,b € Z with b # 3a and is
reducible over Z.

If (s,t) = (0,0), then fyg(r(z) = (z — 1)*(2* + = + 1)® and d3(T) = 4. We

may take a basis for G3(T) consisting of
3+ y3 + 2:3, :I:2y +z22 + y2z, 2z + xy2 + yz2, TYZ.

If (s,t) = (—1,1), then fyzr)(z) = (z — 1)*(z + 1)° and d3(T) = 2. Note
that Gq,-1(z,y,2) and G2 _1(x,y,2) form a basis for &3(T"). In this case,
aGh,—1 + bG2, 1 is degenerate for any a,b € Z.

If (s,t) = (3,-3), then fys(ry(z) = (x — 1) and d3(T) = 2. Note that
G1,3(z,y, 2) and Go 3(x,y, z) form a basis for &3(T"). In this case, aG1 3+ bG2 3
is non-degenerate for any a,b € Z with b # 3a.

Now suppose that deg(mr) < 3. In this case, fr must have a multiple root.
Hence (s,t) = (3,-3) or (—1,1), i.e., fr(z) = (z —1)3 or (z — 1)(z + 1)

If fr(z) = (z — 1)3, then mp(z) = x — 1 or (x — 1)2. The former case
implies that T = I, which is a linear isomorphism of any cubic form. Assume
that mr(z) = (r — 1)2. Since T is rationally similar to its Jordan canonical
form, we may assume that T = [é g ﬂ By a direct computation, we have

fuzry(z) = (2 — 1)!% and d3(T') = 4. Every cubic form in &3(T) is of the form
az® + ba?z + cxz? + d=3,
which is degenerate for arbitrary integers a, b, c,d .

If fr(z) = (x —1)(z + 1)? and mz(x) = (z — 1)(z + 1), then we assume
that 7' = diag(l,—1,—-1). By a direct computation, we have fs(z) =
(x — 1)*(z + 1) and d3(T) = 4. Furthermore every cubic form in &3(7) is
of the form

az® + bry? + cryz + duz?,
which is non-degenerate for any integers a,b,c,d with 4bd — ¢ # 0, and is
reducible over Z.

Now assume that det(T) = —1 and fr(z) = 2® — sz? — tz + 1. By using
similar method in the above, one may easily show that the cases when there is
a non-degenerate form having 7" as a linear isomorphism are (s,t) = (—1,—1),
or (s,t) = (1,1) and mr(z) = (x + 1)(z — 1). In the former case, d3(T) = 2
and every cubic form in &3(7T) is of the form

alx —y+2)(x? —y* + 22 —zy +yz — 222) +by(x — 2)(x — y + 2),
and in the latter case, d3(T") = 6 and every cubic form in &3(7') is of the form

az® + bx’y + cxy® + dzz® + ey® + fyz2.
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Summing up all, we have the following theorem.

Theorem 3.2. Let T € GL3(Z) and let fr(z) = 23 — sz — tx — det(T) be the
characteristic polynomial of T. If det(T) = 1, then there is a non-degenerate
integral ternary cubic form having T as a linear isomorphism except the cases
when (s,t) = (=1,1) and mr(z) = (x — 1)(x + 1)%, or (s,t) = (3,—3) and
mr(z) = (x — 1)%2. If det(T) = —1, then there is a non-degenerate integral
ternary cubic form having T as a linear isomorphism if and only if (s,t) =
(=1,-1), or (s,t) = (1,1) and mr(x) = (x — 1)(z + 1).

Corollary 3.3. Let T € GL3(Z) be a matriz having infinite order and let F
be an integral ternary cubic form such that F(Tx) = F(x). Define

R(F):={N €Z | F(x) = N has an integer solution xo such that TXq # Xo}.

Then for any integer N € R(F), the diophantine equation F(x) = N has
infinitely many integer solutions. In particular, if s # —t, then Fs 1(z,y,2) = N
always has infinitely many integer solutions for any integer N if exists.

Proof. Let fr(x) = 23 —sz? —tx—det(T) be the characteristic polynomial of T'.
We may assume that F' is non-degenerate. Since we are assuming that the order
of T is infinite, we may further assume that det(T) = 1 and mr(z) = fr(z).
Assume that F(xo) = N for some integral vector x¢ which is not an eigenvector
of T corresponding to the eigenvalue one. Since F(T™xy) = N for any integer
m, it is enough to show that T"(xq) # T"(xo) for any u # v. Suppose that
Tkxy = x¢ for some integer k. Then T has a root of unity not equal to one
as an eigenvalue. Therefore, the only possible candidate of (s,t) is (3,—3).
However, in this case, one may easily show that x¢ should be an eigenvector
of T corresponding to the eigenvalue one by a direct computation. This is a
contradiction. Finally, note that if s # —t, then the matrix T' does not have
an eigenvalue one. O

Remark 3.4. Under the same assumptions as above, the number of solutions
for the diophantine equation F'(x) = N is one of 0,1 or oo, for any integer N.

Remark 3.5. In the above corollary, if F(xg) = N for some eigenvector xqo of
T corresponding to the eigenvalue one, then F(x) = N could have exactly one
integer solution. For example, if

0 0 1
T=|1 0 —4 and Gaa(z,y,2) = (x +y+ 2)(zy + yz + 5zx),
01 4

then the equation Gg 4(x,y, z) = 1 has only one solution (1, —3,1), which is an
eigenvector of T' corresponding to the eigenvalue one.
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