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LINEAR ISOMORPHISMS OF NON-DEGENERATE

INTEGRAL TERNARY CUBIC FORMS

Inhwan Lee and Byeong-Kweon Oh

Abstract. In this article, we consider the problem on finding non-degen-
erate n-ary m-ic forms having an n×n matrix A as a linear isomorphism.
We show that it is equivalent to solve a linear diophantine equation. In
particular, we find all integral ternary cubic forms having A as a linear iso-
morphism, for any A ∈ GL3(Z). We also give a family of non-degenerate
cubic forms F such that F (x) = N always has infinitely many integer
solutions if exists.

1. Introduction

A non-zero homogeneous polynomial

F (x) = F (x1, x2, . . . , xn)

=
∑

e1+···+en=m

ei≥0

ae1,...,enx
e1
1 xe2

2 · · ·xen
n , (ae1,...,en ∈ C)

is called an n-ary m-ic form. If n = 2, 3 or 4, then F is called a binary,
ternary or quaternary form, respectively, and if m = 2, 3 or 4, then F is called
a quadratic, cubic or quartic form, respectively. An n-ary m-ic form F is called
degenerate if there is a k-ary (k < n) m-ic form G and a matrix S = (sij) ∈
Mkn(C) such that

F (x) = G(Sx) = G(s11x1 + · · ·+ s1nxn, . . . , sk1x1 + · · ·+ sknxn).

Hence any degenerate form is singular, that is, the projective variety F = 0
on the projective space Pn−1 is singular. Note that a quadratic form is non-
singular if and only if it is non-degenerate.

An n× n matrix A = (aij) satisfying

F (Ax) := F (a11x1 + · · ·+ a1nxn, . . . , an1x1 + · · ·+ annxn) = F (x)
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is called a linear isomorphism of F , and the group of all linear isomorphisms
of F is denoted by Lin(F ). Deciding this group for given non-degenerate n-ary
m-ic form seems to be quite difficult problem even for quadratic form case. In
1880, Jordan proved in [4] that Lin(F ) is finite if F is non-singular and m ≥ 3
(see also [6], [8] and [9]).

Let F be an integral form, that is, ae1,...,en ∈ Z. We define

LinZ(F ) := Lin(F ) ∩Mn(Z),

which is called the integral linear isomorphism group of F . If F is an integral
quadratic form, it is well known that LinZ(F ) is finite if and only if F is definite.
For the structures of integral linear isomorphism groups of some quadratic
forms, see [10] for an indefinite case, and [5] for a definite case.

There is little known on this group for m ≥ 3. In fact, finding an integral
linear isomorphism is equivalent to solve a system of diophantine equations.
Related with computing integral linear isomorphism group, one may naturally
ask, for an A ∈ Mn(Z), whether or not an n-ary m-ic form F exists such that
A ∈ LinZ(F ). The answer of this question is completely known on the quadratic
form case. In Theorem 1 of [3], Horn and Merino classified all possible types of
Jordan canonical forms of the complex orthogonal matrix. What they proved
is that a matrix A whose Jordan canonical form is one of five types given in
the theorem is an automorphism of a non-singular quadratic form defined over
the complex numbers. However one may easily deduce that there also exists
a non-singular integral quadratic form satisfying the above property if A is an
integral matrix.

For m,n ≥ 3, solving the diophantine equation F (x) = N , for an integral
form F and an integer N , is one of challenging problems in number theory.
For example, as one of the simplest cases, it is not known whether or not the
diophantine equation x3+y3+z3 = 33 has an integer solution (see, for example,
[2]).

If F is degenerate, then for any integer N , the equation F (x) = N always
has infinitely many integer solutions if exists. If x0 is an integral solution of
F (x) = N for some integer N , then Ax0 is also an integer solution for any
A ∈ LinZ(F ). According to these two observations, it seems to be interesting
problem to find a non-degenerate form having an integral linear isomorphism
whose order is infinite.

In this article, we consider the problem on finding non-degenerate forms
having A as a linear isomorphism, for any n × n matrix A. We show that
this is equivalent to solve a linear diophantine equation. In particular, we
find all integral ternary cubic forms having A as a linear isomorphism, for any
invertible matrix A ∈ M3(Z). We also give a family of non-degenerate cubic
forms F such that F (x) = N always has infinitely many integer solutions if
exists.



NON-DEGENERATE INTEGRAL TERNARY CUBIC FORMS 1699

2. Linear isomorphisms of n-ary m-ic forms

For positive integers m and n, we define

D
n
m := {(d1, d2, . . . , dn) ∈ Zn :

n∑

i=1

di = m, di ≥ 0}.

For two d = (d1, d2, . . . , dn), e = (e1, e2, . . . , en) ∈ D
n
m, we define a lexico-

graphic order > by

d > e ⇐⇒ there is an i such that dk = ek for any k < i and di > ei.

For n indeterminates x1, x2, . . . , xn and e = (e1, e2, . . . , en) ∈ D
n
m, we define

a monomial xe = xe1
1 xe2

2 · · ·xen
n of degree m. Note that there is a one-to-one

correspondence between the set of all monomials of degree m with n indeter-
minates and the set Dn

m. For an indeterminate vector x = (x1, x2, . . . , xn)
t, we

define an operator

U
n
m(x) := (xe1 ,xe2 , . . . ,xeH(n,m))t,

where e1 > e2 > · · · > eH(n,m) are all elements in D
n
m and H(n,m) is the

combination with repetition.
For a matrix A ∈ Mn(C), assume that (y1, y2, . . . , yn)

t = A(x1, x2, . . . , xn)
t.

Then for any e = (e1, e2, . . . , en) ∈ D
n
m, there are ae,d ∈ C such that

ye = ye11 ye22 · · · yenn =
∑

d∈Dn
m

ae,dx
d.

Now we define U
n
m(A) := (aei,ej

) ∈ MH(n,m)(C), where ei is the i-th element
in D

n
m in the lexicographic order. Note that Un

m(y) = U
n
m(A)Un

m(x).

Lemma 2.1. The map U
n
m : GLn(C) → GLH(n,m)(C) is a multiplicative ho-

momorphism. In particular, if a matrix A ∈ Mn(C) is similar to B, then

U
n
m(A) is also similar to U

n
m(B) for any positive integer m.

Proof. For any A,B ∈ GLn(C) and an indeterminate vector

x = (x1, x2, . . . , xn)
t,

note that

U
n
m(AB)Un

m(x) = U
n
m(ABx) = U

n
m(A)Un

m(Bx) = U
n
m(A)Un

m(B)Un
m(x).

It is well known the set {Un
m(x) : x ∈ Cn} spans the vector space CH(n,m).

Therefore U
n
m(AB) = U

n
m(A)Un

m(B). �

Lemma 2.2. For any A ∈ Mn(C), det(Un
m(A)) = det(A)H(m,n).

Proof. Note that the matrix A is similar to an upper-triangular matrix, that
is, there is a T ∈ GLn(C) such that A = T−1UT , where U = (uij) is an upper-
triangular matrix. For this upper-triangular matrix U , one may easily show
that Un

m(U) is also upper-triangular and

U
n
m(U)e,e = ue1

11u
e2
22 · · ·u

en
nn,
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where e = (e1, e2, . . . , en). Therefore

det(Un
m(A)) = det(Un

m(U)) = det(U)f ,

where H(n,m) · m = nf . Note that f = m
n
H(n,m) = H(m,n). The lemma

follows from this. �

For positive integers m and n, let

(2.1) Fm(x) = Fm(x1, x2, . . . , xn) =
∑

e∈Dn
m

aex
e (ae ∈ C)

be an n-ary m-ic form. Recall that Lin(Fm) denotes the group of all linear
isomorphisms of Fm. If a matrix A is similar to B with the transition matrix
S, that is, B = S−1AS, then one may easily show that

(2.2) A ∈ Lin(Fm) ⇐⇒ B ∈ Lin(Fm ◦ S).

For the form Fm in (2.1), we define U
n
m(Fm) := (ae1

, ae2
, . . . , aeH(n,m)

)t ∈

CH(n,m).

Theorem 2.3. Let Fm be a form given in (2.1). Then A ∈ Lin(Fm) if and

only if Un
m(Fm) is the eigenvector of Un

m(A)t corresponding to the eigenvalue 1.

Proof. Note that Fm(x) = U
n
m(Fm)t · Un

m(x). Hence

Fm(Ax) = Fm(x) ⇐⇒ U
n
m(Fm)t · Un

m(Ax) = U
n
m(Fm)t · Un

m(x)
⇐⇒ U

n
m(Fm)tUn

m(A)Un
m(x) = U

n
m(Fm)t · Un

m(x).

Therefore U
n
m(A)t · Un

m(Fm) = U
n
m(Fm). The theorem follows from this. �

Let A be an n×n complex matrix and fA(x) be its characteristic polynomial.
We define

U
n
m(fA)(x) :=

∏

e∈Dn
m

(x−Λe),

where Λ = (λ1, λ2, . . . , λn) and λ1, λ2, . . . , λn are all eigenvalues of A counting
multiplicities. For the C-vector space of n-ary m-ic forms

Sm(A) = {Fm | Fm(Ax) = Fm(x)},

the dimension of Sm(A) is denoted by dm(A).

Theorem 2.4. Under the assumptions given above, we have

(i) the characteristic polynomial of Un
m(A) is U

n
m(fA)(x);

(ii) there is an n-ary m-ic form Fm having A as a linear isomorphism if

and only if Un
m(fA)(1) = 0;

(iii) if A is diagonalizable, then dm(A) is the algebraic multiplicity of the

eigenvalue one of Un
m(A);

(iv) if n divides m and det(A)
m
n = 1, then there is an n-ary m-ic form

having A as a linear isomorphism, and

(v) if A is an integral matrix, then there is a basis for Sm(A) consisting

of integral forms.
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Proof. Choose a matrix T such that TAT−1 = U = (uij) is upper-triangular
and uii = λi (1 ≤ i ≤ n). For any e ∈ D

n
m, note that U

n
m(U)e,f = 0 for any

f < e and U
n
m(U)e,e = Λe. This implies that U

n
m(U) is also upper-triangular

and all of its eigenvalues are of the form Λe for any e ∈ D
n
m. Hence (i), (ii)

and (iii) follow directly from Theorem 2.3. For (iv), note that U
n
m(U) has an

eigenvalue 1. Finally, assume that A is an integral matrix. Since

Sm(A) = {x ∈ CH(n,m) : Un
m(A)t(x) = x}

and U
n
m(A) is also integral, there are integral vectors that spans Sm(A). �

Assume that A ∈ SLn(Z) and the characteristic polynomial fA(x) of A is a
non-cyclotomic and irreducible polynomial. It is well known that A is a linear
isomorphism of a non-degenerate integral quadratic form if and only if fA is
reciprocal, that is, fA(x) = xnfA(

1
x
) (see [3]). For a cubic case, we only have

the following partial result.

Proposition 2.5. Under the assumptions given above, if the splitting field of

fA(x) is abelian and n is not divisible by 3, then there does not exist an n-ary
cubic form having A as a linear isomorphism.

Proof. Since fA(x) is not cyclotomic by assumption, any root of it is not a
third root of unity. Suppose that α2β = 1 for some roots α and β of fA(x).
Since the Galois group of the splitting field of fA(x) acts on the set of roots
transitively, there is a root δ of fA(x) such that β2δ = 1. Hence δ = α4 is also a
root of fA(x). This implies that α is a root of unity, which is a contradiction. It
was proved in [1] that any product of three roots of fA(x) is not one under the
assumptions given above. Therefore we have U

n
3 (fA)(1) 6= 0. The proposition

follows from Theorem 2.4(ii). �

3. Linear isomorphisms of ternary cubic forms

Let Fm(x) = Fm(x1, x2, . . . , xn) be an n-ary m-ic form as in (2.1). We call
Fm is reducible over C if Fm(x) = Fk(x) · Fm−k(x), where Fk and Fm−k are
forms of degree k and m − k, respectively. If Fm is a product of m linear
forms, then Fm is said to be completely reducible over C. If the above forms
Fk and Fm−k have integral coefficients, then we say that the integral form Fm

is reducible over Z.
For an n-ary m-ic form Fm, the Hessian matrix H(Fm) of Fm is the square

matrix defined by

H(Fm) =




∂2F
∂x2

1

∂2F
∂x1∂x2

· · · ∂2F
∂x1∂xn

∂2F
∂x2∂x1

∂2F
∂x2

2

· · · ∂2F
∂x2∂xn

...
...

. . .
...

∂2F
∂xn∂x1

∂2F
∂xn∂x2

· · · ∂2F
∂x2

n



.
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The determinant of H(Fm) is denoted by h(Fm). In general, h(Fm) is the
n-ary n(m− 2)-ic form for any m,n ≥ 3. If G(x) = Fm(Ax), then

H(G)(x) = At ·H(Fm)(Ax) ·A and h(G)(x) = det(A)2h(Fm)(Ax).

Lemma 3.1. Let A be a 3 × 3 integral matrix such that det(A) 6= ±1. If an

integral cubic form F satisfies F (Ax) = F (x), then F is degenerate.

Proof. Note that F is degenerate if and only if h(F ) = 0 (see, for example,
[7]). Suppose that there is a nonzero vector x0 such that h(F )(x0) 6= 0. For
a prime p dividing det(A), take an integer k such that p2k ∤ h(F )(x0). Since
F (Akx) = F (x), h(F )(x0) = det(A)2kh(F )(Akx0). This is a contradiction. �

Let T be a matrix in GL3(Z). We apply our results obtained in the previous
section to find all (non-degenerate) integral ternary cubic forms having the
matrix T as a linear isomorphism. To find such form, we need to compute
eigenvectors of U3

3(T ) corresponding to the eigenvalue one. If we find a form
having a matrix rationally similar to T as a linear isomorphism, we may easily
find a form having T as a linear isomorphism by (2.2).

Let fT (x)(mT (x)) be the characteristic (minimal, respectively) polynomial
of T . First we assume that T ∈ SL3(Z) and fT (x) = x3− sx2− tx− 1 for some
s, t ∈ Z. Let α, β and γ be all roots of fT (x) counting multiplicities and let
∆f = t2s2−4s3+4t3−18ts−27 be the discriminant of fT . Suppose that fT has
a multiple root α ∈ C, that is, ∆f = 0. Then one may easily show that α = ±1.
Hence fT is (x − 1)3 or (x − 1)(x + 1)2, which implies that (s, t) = (3,−3) or
(−1, 1). Note that these are all integral solutions of the diophantine equation
∆f = 0.

Suppose that deg(mT ) = 3. Since T is rationally equivalent to its compan-

ion matrix, we may assume that T =
[
0 0 1
1 0 t
0 1 s

]
. Note that the characteristic

polynomial of 10× 10 matrix U
3
3(T ) is of the form

fU3

3
(T )(x) = (x− 1)gs,t(x)hs,t(x),

where gs,t(x) is the monic polynomial of degree 3 with roots α3, β3, γ3, and
hs,t(x) is the monic polynomial of degree 6 with roots α2β, α2γ, . . . , βγ2. Note
that gs,t(1) = 0 if and only if s = −t, and hs,t(1) = 0 if and only if ∆f = 0.
The latter holds only when (s, t) = (3,−3) or (−1, 1) as stated above.

Suppose that s 6= −t. Then T is diagonalizable and d3(T ) = 1. In this case,
we can take

Fs,t(x, y, z) := x3 + sx2y + (2t+ s2)x2z − txy2 − (ts+ 3)xyz

+ (t2 − 2s)xz2 + y3 + sy2z − tyz2 + z3.

as a generator of S3(T ). Note that Fs,t is non-degenerate and completely
reducible over C.

Now assume that s = −t. Then fU3

3
(T )(x) = (x − 1)2u(x)v(x)w(x), where

u(x) = x2+x+1+2sx−s2x, v(x) = x2−s3x+3s2x−2x+1, w(x) = x2+x−sx+1.
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Hence, if s = −t and s 6= 0,−1, 3, then d3(T ) ≤ 2. In fact, d3(T ) = 2 in this
case, and one may take a basis for S3(T ) consisting of

G1,s(x, y, z) := (x+ y + z)(x2 + y2 + z2 − xy − yz − (1 + 3s)xz),

G2,s(x, y, z) := (x+ y + z)(xy + yz + (1 + s)xz).

Note that aG1,s + bG2,s is non-degenerate for any a, b ∈ Z with b 6= 3a and is
reducible over Z.

If (s, t) = (0, 0), then fU3

3
(T )(x) = (x− 1)4(x2 + x + 1)3 and d3(T ) = 4. We

may take a basis for S3(T ) consisting of

x3 + y3 + z3, x2y + xz2 + y2z, x2z + xy2 + yz2, xyz.

If (s, t) = (−1, 1), then fU3

3
(T )(x) = (x − 1)4(x + 1)6 and d3(T ) = 2. Note

that G1,−1(x, y, z) and G2,−1(x, y, z) form a basis for S3(T ). In this case,
aG1,−1 + bG2,−1 is degenerate for any a, b ∈ Z.

If (s, t) = (3,−3), then fU3

3
(T )(x) = (x − 1)10 and d3(T ) = 2. Note that

G1,3(x, y, z) and G2,3(x, y, z) form a basis for S3(T ). In this case, aG1,3+bG2,3

is non-degenerate for any a, b ∈ Z with b 6= 3a.
Now suppose that deg(mT ) < 3. In this case, fT must have a multiple root.

Hence (s, t) = (3,−3) or (−1, 1), i.e., fT (x) = (x − 1)3 or (x− 1)(x+ 1)2.
If fT (x) = (x − 1)3, then mT (x) = x − 1 or (x − 1)2. The former case

implies that T = I, which is a linear isomorphism of any cubic form. Assume
that mT (x) = (x − 1)2. Since T is rationally similar to its Jordan canonical

form, we may assume that T =
[
1 0 0
0 1 1
0 0 1

]
. By a direct computation, we have

fU3

3
(T )(x) = (x− 1)10 and d3(T ) = 4. Every cubic form in S3(T ) is of the form

ax3 + bx2z + cxz2 + dz3,

which is degenerate for arbitrary integers a, b, c, d .
If fT (x) = (x − 1)(x + 1)2 and mT (x) = (x − 1)(x + 1), then we assume

that T = diag(1,−1,−1). By a direct computation, we have f
u
3

3
(T )(x) =

(x − 1)4(x + 1)6 and d3(T ) = 4. Furthermore every cubic form in S3(T ) is
of the form

ax3 + bxy2 + cxyz + dxz2,

which is non-degenerate for any integers a, b, c, d with 4bd − c2 6= 0, and is
reducible over Z.

Now assume that det(T ) = −1 and fT (x) = x3 − sx2 − tx + 1. By using
similar method in the above, one may easily show that the cases when there is
a non-degenerate form having T as a linear isomorphism are (s, t) = (−1,−1),
or (s, t) = (1, 1) and mT (x) = (x + 1)(x − 1). In the former case, d3(T ) = 2
and every cubic form in S3(T ) is of the form

a(x− y + z)(x2 − y2 + z2 − xy + yz − 2xz) + by(x− z)(x− y + z),

and in the latter case, d3(T ) = 6 and every cubic form in S3(T ) is of the form

ax3 + bx2y + cxy2 + dxz2 + ey3 + fyz2.
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Summing up all, we have the following theorem.

Theorem 3.2. Let T ∈ GL3(Z) and let fT (x) = x3 − sx2 − tx− det(T ) be the

characteristic polynomial of T . If det(T ) = 1, then there is a non-degenerate

integral ternary cubic form having T as a linear isomorphism except the cases

when (s, t) = (−1, 1) and mT (x) = (x − 1)(x + 1)2, or (s, t) = (3,−3) and

mT (x) = (x − 1)2. If det(T ) = −1, then there is a non-degenerate integral

ternary cubic form having T as a linear isomorphism if and only if (s, t) =
(−1,−1), or (s, t) = (1, 1) and mT (x) = (x− 1)(x+ 1).

Corollary 3.3. Let T ∈ GL3(Z) be a matrix having infinite order and let F
be an integral ternary cubic form such that F (Tx) = F (x). Define

R(F ) := {N ∈ Z | F (x) = N has an integer solution x0 such that Tx0 6= x0}.

Then for any integer N ∈ R(F ), the diophantine equation F (x) = N has

infinitely many integer solutions. In particular, if s 6= −t, then Fs,t(x, y, z) = N
always has infinitely many integer solutions for any integer N if exists.

Proof. Let fT (x) = x3−sx2−tx−det(T ) be the characteristic polynomial of T .
We may assume that F is non-degenerate. Since we are assuming that the order
of T is infinite, we may further assume that det(T ) = 1 and mT (x) = fT (x).
Assume that F (x0) = N for some integral vector x0 which is not an eigenvector
of T corresponding to the eigenvalue one. Since F (Tmx0) = N for any integer
m, it is enough to show that T u(x0) 6= T v(x0) for any u 6= v. Suppose that
T kx0 = x0 for some integer k. Then T has a root of unity not equal to one
as an eigenvalue. Therefore, the only possible candidate of (s, t) is (3,−3).
However, in this case, one may easily show that x0 should be an eigenvector
of T corresponding to the eigenvalue one by a direct computation. This is a
contradiction. Finally, note that if s 6= −t, then the matrix T does not have
an eigenvalue one. �

Remark 3.4. Under the same assumptions as above, the number of solutions
for the diophantine equation F (x) = N is one of 0, 1 or ∞, for any integer N .

Remark 3.5. In the above corollary, if F (x0) = N for some eigenvector x0 of
T corresponding to the eigenvalue one, then F (x) = N could have exactly one
integer solution. For example, if

T =




0 0 1
1 0 −4
0 1 4


 and G2,4(x, y, z) = (x+ y + z)(xy + yz + 5zx),

then the equation G2,4(x, y, z) = 1 has only one solution (1,−3, 1), which is an
eigenvector of T corresponding to the eigenvalue one.
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