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LIE SUPER-BIALGEBRAS ON GENERALIZED LOOP

SUPER-VIRASORO ALGEBRAS

Xiansheng Dai and Bin Xin

Abstract. In this article we consider Lie super-bialgebra structures on
the generalized loop super-Virasoro algebra G. By proving that the first
cohomology group H1(G,G ⊗ G) is trivial, we obtain that all such Lie
bialgebras are triangular coboundary.

1. Introduction

The Virasoro algebra and super-Virasoro algebra are closely related to the
conformal field theory and the string theory, which are paid much attention by
mathematics and physics (e.g., [1, 7, 9, 10]). The generalized forms associated
to these algebras have been extensively investigated, such as the high rank
Virasoro algebras, the loop-Virasoro algebra, generalized Virasoro algebras and
generalized super-Virasoro algebras (e.g., [2, 7, 8, 11, 14–17,19]).

The concept of Lie bialgebras was first introduced by Drinfeld in the frame-
work of quantum group theory (see [4], [5]). Generally speaking, a Lie bialgebra
is a Lie algebra provided with a Lie coalgebra structure which satisfies certain
compatibility condition. A Lie bialgebra is a semiclassical structure of some
quantum group. In recent decades, some articles about Lie bialgebras (super-
bialgebra) appeared (e.g., [2, 3, 12, 13, 16, 18]). In [13], Lie bialgebra structures
on the one-sided Witt algebra, the Witt algebra, and the Virasoro algebra are
completely classified, which are shown to be triangular coboundary. Similar re-
sults were obtained for other Lie algebras, such as generalized Virasoro-like Lie
algebras, Block Lie algebras, generalized Witt type Lie algebras, generalized
loop Virasoro algebras, etc. In [19], the Lie super-bialgebra structures on gener-
alized super-Virasoro algebras are investigated, where the Lie super-bialgebras
are not all triangular coboundary.

In this paper, we consider the generalized loop super-Virasoro algebra G (cf.
Definition 2.6), which is a tensor product of the centerless generalized super-
Virasoro algebra sv and the Laurent polynomial algebra F[t, t−1]. By proving
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that the first cohomology group H1(G,G ⊗ G) is trivial, we show that all Lie
super-bialgebra structures on the generalized loop super-Virasoro algebra are
triangular coboundary. It should be pointed out that the classical techniques
in [6] may not be directly applied to our case since G is not finitely generated
as Lie algebras in general.

2. Preliminary and main result

We first recall some definitions related to Lie super-bialgebras. Let U =
U0̄ +U1̄ be a Z2-graded vector space. For x ∈ Uᾱ with ᾱ ∈ Z2 = {0̄, 1̄}, we say
x is homogeneous of degree ᾱ, and write [x] = ᾱ. In what follows x is assumed
to be homogeneous whenever [x] occurs. Let L=L0̄ ⊕L1̄ be a Lie superalgebra
over an arbitrary field F of characteristic 0, i.e., there exists a bilinear map
[ , ] : L × L → L such that

[Lσ,Lτ ] ⊂ Lσ+τ ,(1)

[x, y] = −(−1)|x||y|[y, x],(2)

[x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]],(3)

where σ, τ ∈ Z2 and x, y, z ∈ L.
Let V = V0̄⊕V1̄ be an L-module. A homogenous derivation of degree [d] ∈ Z2

is a Z2-homogenous linear map d : L → V , such that d(Lī) ⊂ Vī+[d] for ī ∈ Z2

and satisfying

d[x, y] = (−1)[d][x]x · d(y)− (−1)[y]([d]+[x])y · d(x) for x, y ∈ L.

A derivation d is called even if |d| = 0̄, odd if |d| = 1̄. For a homogenous element
v ∈ V , it is easy to see that the linear map vinn : L → V, x → (−1)[v][x]x ·
v , ∀x ∈ L is a derivation, and vinn is called inner. Denote by Derᾱ(L, V ) the set
of all derivations of homogenous of degree ᾱ. Then Der (L, V ) = Der 0̄(L, V )⊕
Der 1̄(L, V ) is the derivation algebra on L. Similarly, Inn (L, V ) = Inn 0̄(L, V )⊕
Inn 1̄(L, V ) is the set of all inner derivations on L. Let H1(L, V ) be the first
cohomology group of L with coefficients in V . It is well known that

H1(L, V ) ∼= Der(L, V )/Inn(L, V ).

Denote by τ the super-twist map of L ⊗ L, namely,

τ(x⊗ y) = (−1)[x][y]y ⊗ x, ∀x, y ∈ L.

Denote by ξ the super-cyclic map which cyclically permutes the coordinates
of a element in L ⊗ L ⊗ L, i.e.,

ξ(x1 ⊗ x2 ⊗ x3) = (−1)[x1]([x2]+[x3])x2 ⊗ x3 ⊗ x1, ∀x1, x2, x3 ∈ L.

Then the definition of Lie superalgbra can be restated as follows.
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Definition 2.1. A Lie superalgebra is a pair (L, ϕ) consisting of a super-vector
space L and a bilinear map ϕ : L ⊗ L → L (the super-bracket) satisfying the
following conditions:

Ker(1⊗ 1− τ) ⊂ Kerϕ,

ϕ · (1⊗ ϕ) · (1 ⊗ 1⊗ 1 + ξ + ξ2) = 0,

where 1 denotes the identity map on L.

Dually, we have the definition of Lie super-coalgebras.

Definition 2.2. A Lie super-coalgebra is a pair (L,∆) consisting of a super-
vector space L and a linear map ∆ : L → L⊗L (the super-cobracket) satisfying
the following conditions:

Im∆ ⊂ Im(1⊗ 1− τ),

(1 ⊗ 1⊗ 1 + ξ + ξ2) · (1⊗∆) ·∆ = 0.

Definition 2.3. A Lie super-bialgebra is a triple (L, ϕ,∆) satisfying the fol-
lowing conditions:

(L, ϕ) is a Lie superalgebra,

(L,∆) is a Lie super-coalgebra,

∆ϕ(x ⊗ y) = x ·∆y − (−1)[x][y]y ·∆x,

where x, y ∈ L and the symbol “ · ” means the adjoint diagonal action given by

x · (a⊗ b) = [x, a]⊗ b+ (−1)[x][a]a⊗ [x, b], x, a, b ∈ L,

and in general [x, y] = ϕ(x ⊗ y) for x, y ∈ L.

Note that the third condition in above definition means ∆ : L → L⊗L is a
derivation.

Definition 2.4. A coboundary Lie super-bialgebra is a quadruple (L, ϕ,∆, r),
where (L, ϕ,∆) is a Lie super-bialgebra and r ∈ Im(1⊗ 1− τ) such that ∆ =
∆r is coboundary of r, i.e.,

∆r(x) = (−1)[x][r]x · r, ∀x ∈ L.

Denote by U(L) the universal enveloping algebra of L. For any r =
∑

i ai ⊗
bi ∈ L⊗ L, define three elements in U(L)⊗ U(L) ⊗ U(L) as follows:

r12 =
∑

i

ai ⊗ bi ⊗ 1, r13 =
∑

i

ai ⊗ 1⊗ bi, r23 =
∑

i

1⊗ ai ⊗ bi,

where 1 is the identity element of U(L).

Definition 2.5. A coboundary Lie super-bialgebra (L, ϕ,∆, r) is called trian-
gular if r is a solution of the classical Yang-Baxter equation (CYBE):

c(r) := [r12, r13] + [r12, r23] + [r13, r23] = 0.
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Let Γ be a nonzero additive subgroup of F and s ∈ F such that 2s ∈ Γ.
The centerless generalized super-Virasoro algebra sv is a Lie superalgebra with
F-basis {Lα, Gµ | α ∈ Γ, µ ∈ s+ Γ} satisfying the following bracket relations:

[Lα, Lβ ] = (β − α)Lα+β , [Lα, Gµ] = (µ−
α

2
)Gα+µ, [Gµ, Gν ] = 2Lµ+ν ,

where α, β ∈ Γ, µ, ν ∈ s+ Γ.

Definition 2.6. A generalized loop super-Virasoro algebra G is a Lie super-
algebra which is a tensor product of the centerless generalized super-Virasoro
algebra sv and the Laurent polynomial algebra F[t, t−1], i.e., G = sv⊗ F[t, t−1]
with a basis {Lα,i, Gµ,j | α ∈ Γ, µ ∈ s+Γ, i, j ∈ Z} subject to the commutation
relations:

[Lα,i, Lβ,j] = (β − α)Lα+β,i+j ,(4)

[Lα,i, Gµ,j ] = (µ−
α

2
)Gα+µ,i+j ,(5)

[Gµ,i, Gν,j ] = 2Lµ+ν,i+j ,(6)

for α, β ∈ Γ, µ, ν ∈ Γ + s, i, j ∈ Z, where Lα,i = Lα ⊗ ti, Gα,i = Gα ⊗ ti.

It is clear that G contains sv as a subalgebra. Let Γ′ be an additive subgroup
of F generated by Γ

⋃
{s}. For any α ∈ Γ′, i ∈ Z, we denote Lα,i = Lα ⊗ ti,

Gα,i = Gα ⊗ ti. We use the convention that if an undefined notation appears
in an expression, we treat it as zero; for instance, Lα,i = 0, Gβ,i = 0 if α /∈
Γ, β /∈ s+ Γ. Then G = ⊕α∈Γ′Gα is Γ′-graded with

Gα = span{Lα,i | i ∈ Z} ⊕ span{Gα,i | i ∈ Z}, α ∈ Γ′.

Obviously, G is also Z2-graded: G = G0̄ ⊕ G1̄, with

G0̄ = span{Lα,i | α ∈ Γ, i ∈ Z}, G1̄ = span{Gµ,i | µ ∈ s+ Γ, i ∈ Z}.

The main result of this article is the following theorem.

Theorem 2.7. Every Lie super-bialgebra structure on G is triangular cobound-

ary (cf. Definitions 2.3–2.6).

3. Proof of main result

Denote by V the tensor product G ⊗G from now on. Note that V possesses
a natural G-module structure under the adjoint diagonal action of G. For
fixed i and j, let Vij = span{Xα,i ⊗ Yβ,j | α, β ∈ Γ′, X, Y ∈ {L,G}}, then
V = ⊕i,j∈ZVi,j . Note that Vi,j

∼= sv⊗ sv as a sv-module. As a vector space, we
have V = G ⊗ G ∼= (sv⊗ sv)⊗ F[x±1, y±1]. The G-module action on V can be
written as follows:

Xα,i · (Mβ ⊗Nγx
jyk) = [Xα,Mβ]⊗Nγx

i+jyk+(−1)[α][β]Mβ⊗ [Xα, Nγ ]x
jyi+k,

where X,M,N ∈ {L,G}.
The following result can be found in the references [4,12,19] or obtained by

using the similar arguments as those given.
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Lemma 3.1. Let L be a Lie superalgebra and r ∈ Im(1⊗ 1− τ) ⊂ L⊗L, then
(1 ⊗ 1 ⊗ 1 + ξ + ξ2)(1 ⊗ ∆r)∆r(x) = x · c(r), ∀x ∈ L. In particular, a triple

(L, [·, ·],∆r) is a Lie super bialgebra if and only if r satisfies x · c(r) = 0 for all

x ∈ L.

Lemma 3.2. Assume that an element c ∈ G ⊗ G ⊗ G satisfies x · c = 0 for all

x ∈ G. Then c = 0.

Proof. Let c =
∑

α,β,γ Mα ⊗Nβ ⊗ Pγf
M,N,P
α,β,γ (x, y, z), where fM,N,P

α,β,γ (x, y, z) ∈

F[x±, y±, z±],M,N, P ∈ {L,G}. Choose a total order on Γ which is com-
patible with the group structure of Γ. Naturally, this order induces a lex-
icographic order on Γ × Γ × Γ. Suppose that c 6= 0, then there exists a

nonzero homogeneous term Mα0
⊗ Nβ0

⊗ Pγ0
fM,N,P
α0,β0,γ0

(x, y, z). Moreover, we
assume this term is maximal. Then we can choose an element δ ∈ Γ such that
[Lδ,Mα0

] = h(δ, α0)Mα0+δ 6= 0, h(δ, α0) ∈ F. Thus h(δ, α0)Mα0+δ ⊗ Nβ0
⊗

Pγ0
fM,N,P
α0,β0,γ0

(x, y, z) is a maximal term in Lδ,0 · c, which is a contradiction with
Lδ,0 · c = 0. This completes the proof of the lemma. �

Corollary 3.3. Let r ∈ Im(1 ⊗ 1 − τ) ⊂ G ⊗ G. Then (G, [·, ·],∆r) is a Lie

super-bialgebra if and only if r is a solution of CYBE, i.e., c(r) = 0.

Lemma 3.4. Let d ∈ Der(G, V ). Then there exists an element v ∈ V such

that d|sv = dv, where dv is an inner derivation of sv.

Proof. Clearly, d|sv ∈ Der(sv, V ). For convenience, we denote d|sv by d in the
following discussions. Since V = ⊕i,jVi,j as a sv-module, where Vi,j

∼= sv⊗ sv.
Let di,j belongs to Der(sv, Vi,j), i, j ∈ Z. Then we have d =

∑
i,j di,j , which

holds in the sense that only finitely many terms di,j(x) 6= 0 appear when
one applies d =

∑
i,j di,j to any x ∈ G. By Proposition 3.4 in [19], we have

H1(sv, Vi,j) = H1(sv, sv ⊗ sv) = 0, which means di,j is a inner derivation for
any i, j ∈ Z. If the right hand of the expression d =

∑
i,j di,j is a finite sum,

then
∑

i,j vi,j ∈ V . Clearly, d = dv is an inner derivation for such v =
∑

i,j vi,j .

This proves the lemma. In the rest of the proof we aim to show that
∑

i,j di,j

is a finite sum. The proof will be completed case by case.

Case 1: d is even.
Considering the action d on L0,0, L1,0, L2,0, respectively, then we deduce that

the set S = {(i, j) ∈ Z × Z | L0,0 · vi,j , L1,0 · vi,j , L2,0 · vi,j not all is zero} is a
finite set. Denote by S̄ the complement of S in Z×Z, i.e., S̄ = {(i, j) ∈ Z×Z |
L0,0 · vi,j = L1,0 · vi,j = L2,0 · vi,j = 0}.

Let (i, j) ∈ S̄, i.e., L0,0 · vi,j = L1,0 · vi,j = L2,0 · vi,j = 0. Since L0,0 · vi,j = 0
and d is even, we can assume

vi,j =
∑

α

f(α)Lα ⊗ L−αx
iyj +

∑

α

φ(α)Gα+s ⊗G−α−sx
iyj .
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Note that

Lk,0 · vi,j =
∑

α

(
(α− 2k)f(α− k)− (α + k)f(α)

)
Lα ⊗ Lk−αx

iyj

+
∑

α

(
(α+ s−

3

2
k)φ(α − k)− (α+ s+

1

2
k)φ(α)

)

Gα+s ⊗Gk−α−sx
iyj.

It follows from L1,0 · vi,j = 0 that

(α− 2)f(α− 1)− (α+ 1)f(α) = 0,(7)

(α+ s−
3

2
)φ(α − 1)− (α+ s+

1

2
)φ(α) = 0.(8)

Replacing α by α− 1 in the above formulas, we have

(α− 3)f(α− 2)− αf(α− 1) = 0,(9)

(α+ s−
5

2
)φ(α − 2)− (α + s−

1

2
)φ(α − 1) = 0.(10)

On the other hand, it follows from L2,0 · vi,j = 0 that

(α− 4)f(α− 2)− (α+ 2)f(α) = 0,(11)

(α+ s− 3)φ(α − 2)− (α+ s+ 1)φ(α) = 0.(12)

The linear equations system consisting of (7), (9) and (11)
(
rep., (8), (10) and

(12)
)
implies f(α) = 0

(
rep., φ(α) = 0

)
for all α ∈ Γ. Then vi,j = 0 for all

(i, j) ∈ S̄, i.e., {(i, j) | vi,j 6= 0} ⊂ S. We conclude that d =
∑

i,j di,j is a finite
sum since S is a finite set.

Case 2: d is odd.
Let S, S̄ be defined as before. Since d is odd, we can assume

vi,j =
∑

α

g(α)Lα ⊗G−αx
iyj +

∑

α

h(α)Gα+s ⊗ L−α−sx
iyj.

Note that

Lk,0 · vi,j =
∑

α

(
(α− 2k)g(α− k)− (α+

k

2
)g(α)

)
Lα ⊗Gk−αx

iyj

+
∑

α

(
(α+ s−

3

2
k)h(α− k)− (α+ s+ k)h(α)

)

Gα+s ⊗ L−α−s+kx
iyj.

It follows from L1,0 · vi,j = 0 that

(α− 2)g(α− 1)− (α+
1

2
)g(α) = 0,(13)

(α+ s−
3

2
)h(α − 1)− (α+ s+ 1)h(α) = 0.(14)
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Replacing α by α− 1 in the above formulas, we have

(α− 3)g(α− 2)− (α−
1

2
)g(α− 1) = 0,(15)

(α+ s−
5

2
)h(α − 2)− (α+ s)h(α− 1) = 0.(16)

On the other hand, it follows from L2,0 · vi,j = 0 that

(α− 4)g(α− 2)− (α+ 1)g(α) = 0,(17)

(α+ s− 3)h(α− 2)− (α+ s+ 2)h(α) = 0.(18)

From the linear equations system consisting of (13), (15) and (17), by the
elimination method we have (54α + 5)g(α) = (54α + 5)g(α − 2) = 0. Thus
g(α) = 0 for all α ∈ Γ. Similarly, by the linear equations system consisting of
(14), (16) and (18), we have (α+ s− 6)h(α) = (α+ s− 6)h(α− 2) = 0. Then
h(α) = 0, α ∈ Γ. By the similar discussions as those in the case 1, we deduce
that d =

∑
i,j di,j is a finite sum. �

Proposition 3.5. Der(G, V ) = Inn(G, V ), i.e.,H1(G, V ) = 0.

Proof. Since G is Γ′-graded, then V can be equipped with a Γ′-grading: V =
⊕α∈Γ′Vα with Vα =

∑
β+γ=α Gβ ⊗ Gγ , α, β, γ ∈ Γ′. A derivation d is called

homogeneous of degree α, α ∈ Γ′, if d(Vβ) ⊂ Vα+β for all β ∈ Γ′. Denote
by Der(G, V )α the set consisting of all derivation of the degree α. Let d ∈
Der(G, V ). For any x ∈ Gβ with β ∈ Γ′, d(x) can be written into d(x) =∑

γ∈Γ′ vγ with vγ ∈ Vγ , then we define dα by dα(x) = vα+β . It is easy to check

dα ∈ Der(G, V )α, and we have

d =
∑

α∈Γ′

dα, where dα ∈ Der(G, V )α,

which holds in the sense that for every x ∈ G only finitely many nonzero terms
dα(x) appeared in d(x) =

∑
α∈Γ′ dα(x).

Replacing d by d−dv for some v ∈ V , we can assume d(sv) = 0 since Lemma
3.4. In particular, we have d(L0,0) = 0. For any xβ ∈ Gβ , β ∈ Γ′, applying dα

to [L0,0, xβ ] = βxβ and using the facts dα(xβ) ∈ Vα+β and L0,0|Vα+β
= α + β,

we have dα(xβ) = (−1)[α][β]xβ · α−1
dα(L0,0) if α 6= 0. Then dα ∈ Inn(G,V) if

α 6= 0.
From now on we aim to investigate the derivation of degree 0. We need to

consider two cases: d is even and d is odd.

Case 1: If d ∈ (Der(G, V ))0 is even, then d = 0.
Assume

d(Lα,i) =
∑

γ∈Γ

(Gγ ⊗Gα−γ)aα,i,γ +
∑

γ∈Γ

(Lγ ⊗ Lα−γ)bα,i,γ ,

d(Gµ,i) =
∑

γ∈Γ

(Lγ ⊗Gµ−γ)cµ,i,γ +
∑

γ∈Γ

(Gγ ⊗ Lµ−γ)dµ,i,γ .
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Claim 1: d(Lα,i) = 0, α ∈ Γ, i ∈ Z.
Applying d to the equation [Lα,i, Lβ,i] = (β − α)Lα+β,i+j , we have

(β − α)aα+β,i+j,γ = (γ −
3

2
α)xiaβ,j,γ−α + (β − γ −

α

2
)yiaβ,j,γ(19)

− (γ −
3

2
β)xjaα,i,γ−β − (α− γ −

β

2
)yjaα,i,γ .

Letting α = β = 0 in (19), we obtain

(20) (x − y)a0,i,γ = (xi − yi)a0,1,γ if γ 6= 0.

Setting β = i = 0 in (19), one has

(21) −αaα,j,γ = (γ −
3

2
α)xia0,j,γ−α − (γ +

α

2
)yia0,j,γ .

Substituting (21) into (19) and letting β = α, we have

(
α

2
− γ)yi

(
(γ −

3

2
α)a0,j,γ−α − (γ +

α

2
)a0,j,γ

)
(22)

+(γ −
3

2
α)xi

(
(γ −

5

2
α)a0,j,γ−2α − (γ −

1

2
α)a0,j,γ−α

)

−(
α

2
− γ)yj

(
(γ −

3

2
α)a0,j,γ−α − (γ +

α

2
)a0,j,γ

)

−(γ −
3

2
α)xj

(
(γ −

5

2
α)a0,j,γ−2α − (γ −

1

2
α)a0,j,γ−α

)
= 0.

Multiplying (22) by x− y and using (20), we have

2(γ −
α

2
)(γ −

3

2
α)a0,1,γ−α(23)

= (γ −
3

2
α)(γ −

5

2
α)a0,1,γ−2α + (γ −

α

2
)(γ +

α

2
)a0,1,γ .

Note that d(L0,1) =
∑

γ Gγ ⊗G−γa0,1,γ+
∑

γ Lγ⊗L−γb0,1,γ , in which every

sum is finite. This fact together with the equation (23) means there exists
some α such that γ 6= ±α

2 and a0,1,γ−2α = a0,1,γ−α = 0. Then we deduce
that a0,1,γ = 0 if γ 6= 0. This together with (20) implies a0,i,γ = 0 if γ 6= 0.
Similarly, we have b0,i,γ = 0 for γ 6= 0.

Now we assume d(L0,i) = G0⊗G0ai+L0⊗L0bi, where ai = a0,i,0, bi = b0,i,0.
Noting the fact d(Lα,0) = 0 and applying d to the equation [L0,i, Lα,0] = αLα,i,
one has

d(Lα,i) =
1

2
(Gα ⊗G0)ai + (Lα ⊗ L0 + L0 ⊗ Lα)bi for α 6= 0.

Setting γ = α in (22), we obtain ajx
i + aix

j = 0 for all i, j ∈ Z. Hence ai = 0
for all i ∈ Z. Similarly, bi = 0, ∀i ∈ Z. We conclude that d(Lα,i) = 0.

Claim 2: d(Gµ,i) = 0, µ ∈ s+ Γ, i ∈ Z.
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Applying d to the equation [Lα,i, Gµ,j ] = (µ − α
2 )Gα+µ and using the fact

d(Lα,i) = 0, we have

(γ − 2α)xicµ,j,γ−α + (µ− γ −
α

2
)yicµ,j,γ = (µ−

α

2
)cµ+α,i+j,γ ,(24)

(γ −
3

2
α)xidµ,j,γ−α + (µ− γ − α)yidµ,j,γ = (µ−

α

2
)dµ+α,i+j,γ .(25)

Letting α = 0 in (24), one has

(26) (µ− γ)yicµ,j,γ + γxicµ,j,γ = µcµ,i+j,γ .

Setting j = 0 (rep. µ = 0) in (26), we have

cµ,i,γ = 0 if (µ, γ) 6= (0, 0).(27)

Similarly, we deduce from (25) that

dµ,i,γ = 0 if (µ, γ) 6= (0, 0).(28)

We can assume d(G0,i) = L0 ⊗G0ci +G0 ⊗ L0di, where ci = c0,i,0, di = d0,i,0.
Applying d to the equation [Lµ,0, G0,i] = −µ

2Gµ,i, one has

d(Gµ,i) = ci(2Lµ ⊗G0 + L0 ⊗Gµ) + di(Gµ ⊗ L0 + 2G0 ⊗ Lµ), µ 6= 0.

Letting µ = 0 and γ = α 6= 0 in (24), we have ci = 0 for all i ∈ Z. Similarly,
di = 0. Then d(Gµ,i) = 0, ∀µ ∈ s+ Γ. This proves Case 1.

Case 2: If d is odd, then we also have d = 0.
Using the same techniques as those in Case 1, one can prove Case 2. �

Lemma 3.6. Assume r ∈ V such that x ·r ∈ Im(1⊗1− τ) for all x ∈ G. Then

r ∈ Im(1 ⊗ 1− τ).

Proof. Write r =
∑

α∈S rα, rα ∈ Vα, where S is a finite subset of Γ′. Obviously,

x · r ∈ Im(1 ⊗ 1− τ) if and only if x · rα ∈ Im(1⊗ 1− τ) for all α ∈ S.

Thus we can suppose that r = rα is homogeneous.
Since L0,0 · rα = αrα ∈ Im(1 ⊗ 1 − τ), we have rα ∈ Im(1 ⊗ 1 − τ) if

α 6= 0. If α = 0, we assume that r0 =
∑

α Mα ⊗ N−αf
M,N
α (x, y), where

M,N ∈ {L,G}, fM,N
α (x, y) ∈ F[x±, y±]. Note that L0,i · r0 =

∑
α Mα ⊗

N−α(x
i − yi)αfM,N

α (x, y) ∈ Im(1 ⊗ 1 − τ) and τ(Mα ⊗ N−αf
M,N
α (x, y) =

N−α ⊗ Mαf
M,N
α (y, x). Then we have fM,N

α (x, y) + fM,N
−α (y, x) = 0 if α 6= 0.

Hence r′0 =
∑

α6=0 Mα ⊗N−αf
M,N
α (x, y) ∈ Im(1⊗ 1− τ).

Let r′′0 = r0 − r′0 =
∑

M,N M0 ⊗ N0f
M,N
0 (x, y). Clearly, Lα,0 · r′′0 ∈ Im(1 ⊗

1 − τ). It follows that fM,N
0 (x, y) + fM,N

0 (y, x) = 0 for M,N ∈ {L,G}. Then

r′′0 =
∑

M,N M0 ⊗ N0f
M,N
0 (x, y) ∈ Im(1 ⊗ 1 − τ). Therefore, r0 = r′0 + r′′0 ∈

Im(1⊗ 1− τ). This proves the lemma. �
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Proof of Theorem 2.7. Let (G, ϕ,∆) be a Lie super-bialgebra structure on G.
Then ∆ = ∆r for some r ∈ G⊗G by Proposition 3.5, and x·r ∈ Im(1⊗1−τ) for
any x ∈ G since Im∆ ⊂ Im(1⊗1−τ). By Lemma 3.6, we have r ∈ Im(1⊗1−τ).
We also have c(r) = 0 by Corollary 3.3. We conclude that (G, ϕ,∆) is a
triangular coboundary Lie super-bialgebra by Definitions 2.3, 2.4 and 2.5. �
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