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A FAMILY OF FUNCTIONS ASSOCIATED WITH THREE
TERM RELATIONS AND EISENSTEIN SERIES

AYKUT AHMET AYGUNES

ABSTRACT. In this paper, for a € C, we investigate functions g, and 1),
associated with three term relations. g, is defined by means of function
1q. By using these functions, we obtain some functional equations related
to the Eisenstein series and the Riemann zeta function. Also we find a
generalized difference formula of function gq.

1. Introduction

Recently, many authors has studied on period functions and three term
relations. The period functions are real analytic functions t(x) which satisfy
three term relations, for t € R,

1 x
)=y +1)+ ,
o) = vt + 1)+ o ()
where s = £ + it (cf. [4], [9]).
Let H = {z € C: Im(z) > 0}. The period function is also associated with a
periodic and holomorphic function f defined by

1 1
1@ =)+ o (1)),
where z € H.
In [4], Bettin and Conrey studied on the case of real analytic Eisenstein
series. For these, the periodic function f turns out to be essentially
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where, for n € N and a € C,
oa(n) = Zd“.
d|n

A Maass wave form on the full modular group I' = PSL(2,Z) is a smooth
I-invariant function u from the upper half plane H to C which is small as
y — oo and satisfies Au = Au for some A € C, where

is the hyperbolic Laplacian (cf. [8], [9]).

Maass forms have many applications in a number of areas of mathematics
such as number theory, dynamical systems and quantum chaos (cf. [9]).

In [7], Lewis showed that there exists a one-to-one correspondence between
the space of even Maass wave forms with eigenvalue A = s(1 — s) and the space
of holomorphic functions on C' = C\ (—o0, 0] satisfying three term relation
together with a suitable growth condition.

In [9], Lewis and Zagier investigated the properties of general solutions of
the three term relations, which is called periodlike functions. Also they were
interested both in describing the totality of periodlike functions and in deter-
mining sufficient conditions for such a function to be the period function of a
Maass form.

Let u(z) be a Maass wave form with spectral parameter s. Then Lewis
and Zagier defined the associated period function ¢ in the upper and lower
half-planes by the formula

w(z) = 4 Zn(s_l)/QAin (eiQﬂ'inz _ Z—QSeiQﬂ'in/z)
n=1

(Here, the symbol = denotes equality up to a factor depending only s). On the
other hand, the original definition of the period function as given (in the even
case) in [7] was represented by an integral transform; namely

P1(z) = /000 2522 + 2) 75 tu(it)dt , (Re(z) > 0)

where we have written “i,” instead of “»” to avoid ambiguity.

In [5], Bruggeman gave a cohomological interpretation of theory of period
functions and therefore the theory in the Maass context was developed.

In this paper, we focus on the results of Bettin and Conrey in [4]. By
using these results, for a € C, we obtain some functional equations related to
function g, where g, is associated with period function 1,. In final section, we
give generalized difference formulas related to g,.

In [4], for a € C, Bettin and Conrey gave a relation between extended
Eisenstein series E,4+1 and period function v,. Therefore they obtained the
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function g, associated with v,. Also, for Re(7) > 0 and |z| < 7, they gave the
Taylor series of g,(z) around .
For a > 2, the Eisenstein series are defined by (cf. [2], [10], [11])

and also the Eisenstein series has a Fourier expansion, for k£ > 2 and a = 2k,
given by (cf. [2])

2(27i) %k &
(2k — 1)

e?ﬂ'inz .
!
n=1

GQk(Z) = 2C(2]€) + O’Qkfl(n>

In this expansion, for ¢ > 1 and s = o +it, we define Riemann zeta function
(cf. [3], [12])
o0
1
C(s) = —"
n=1 n®
For s =1, the Riemann zeta function is the harmonic series which diverges
to oo and satisfies the following properties

¢(s) = 2°7° Lsin (?) T(1—s)C(1—s)
and

Bn
(11) ((-m) = =24,

where Bernoulli numbers and gamma function are denoted by B, and I'(s),
respectively (cf. [1], [12]).
The Laurent series of ((s) in a neighborhood of its pole s = 1 has the form:

(12) ((s) = — 71+ D mls = )",

n=1

where «y is the Euler-Mascheroni constant and -, is also expressed in (cf. [6]):

- ~ (logk)"  (logm)"*!
= w}gnoo {Z k. n+l '

k=1

In special case of n = 0, we have vy = 7.

2. Some functional equations related to function g,

Let Imz > 0. We consider the function E,;; defined by
2

Ea+1(Z) =1 + ﬂ

Sa(2),
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where

Sa(z) = Z oa(n)e?
n=1

For 2 < k € N and a = 2k — 1, we arrive at the following well known
property:

(2.1) Eor(z) — Z%Egk <£) =0.

If we extend 2k to any complex number a+ 1, the equation (2.1) is no longer
true. However, Bettin and Conrey investigate the properties of the function

(2.2) 06 = Ean () = iz B (1)

In this section, we obtain some functional equations related to g, by using
the following theorem:

Theorem 2.1 (cf. [4]). Let Imz > 0 and a € C. Then 1), satisfies the three
term relation

Galz +1) = a(2) + —— wa( z ):o

(z + 1)tte z+1
and extends to an analytic function on C' = C\ (—o0,0] via the representation
i ((1—a) .1 wa . ga(2)
2.3 o = — t— ,
(2.3) Ya(2) ) e ' +Z<(7a>
where
n BQ" 2n—1
D)= =2 X (-1 G- 20— a)ere)
1<n<M ’
1 ma
+ = C(3)G(s — )T () — s (2m2) "*ds
T J(—1-2M) sin Ts=a)

and M is any integer greater or equal to —% min(0, Rea).

For a — 07, we get

(2.4) Yo(z) = -2

where
go(z) = i/ SONCRL SN
(=1/2)

v sinws

(—v + log 27z)

_ 9
Tz i90(2),

In Theorem 2.1, Bettin and Conrey also showed that there exists a function
1, # 0 which satisfies the three term relation. Three term relation is a special
case of the following functional equation:

1 z
(2'5) ¢a(z+1)_¢a(z)+ (Z+1)1+a¢11 (Z+]_) :fa(z)'
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In the following theorem, we show the existence of functions f, # 0 and
¢a 7 0 such that the equation (2.5) holds.
Theorem 2.2. Let Imz > 0 and a € C. Then, we have

(Z+11)1+a9a (zil) + ga(z + 1) — ga(2)

¢(1—a) +C(fa)cot% ¢(1—a)

wz(z + 1) (z+ 1)t+e mz(z +1)e

Proof. From equation (2.3), we know that

i ¢((l—a) . 1 ma . ga(2)
velB) = ey e Oty Py

1 z B ) ¢(1—a) .1 ma
(z—|—1)1+“wa (z—i—l) - m2(z+ 1) ((—a) T it ot

) 1 z
T Ca Gy et (z+1)
and
__ i @-eg .1 ma ga(z+]1)
wa(ZﬁLl)iﬂ(z—i—l) ¢(—a) (z 4+ 1)t+e ¢ 2 + ¢(—=a) ~’

where
1 z
(2.6) VYa(z +1) = Pa(2) + (Z+1)1+a¢“ (z+1) =0

By using the above equations, we arrange (2.6) as a functional equation
d

represented by g,.

Remark 2.3. In Theorem 2.2, consider z — z — 1. Then,

lim —— {Z:Hga (221) +ga(2)—ga(z—1)}

a—0 §(—a)
) 1 1 _ocot i ((1—-a) 1
o 111_>n10 ¢(—a) {77‘(,2 -1) - WZ} + il—% zl+a il—% C(—a) w(z—1)z

hm{m“)l 1 tﬂ}+(1 o Cl—a) (=1

C(—a) 7z zlte R m(z—1) a=0 ((—a) 2@

By using the properties of (1.1) and (1.2) related to zeta function, we get

. ((l—a) 1 1 ma) (=7 +log2mz)
(2.7) ;L{%{ C(—a) 7z zlte cot 7} N Tz
and
(2.8) lim (1 —a)(z* —1) = —logz.

a—0
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From (2.7) and (2.8), we arrive at

%go (Zgl) + 90(2) = go(z — 1) =

Lemma 2.4. Let Imz > 0 and a € C. Then, we have

—v + log 27z 1

1 .
Tz m(z—1) 08%

0ol + (<1 ) = (L4 (210 Euna (o)

Proof. If we consider z — —1/z in equation (2.2), we get

(2.9) ﬁwa <1) = Za—1+1Ea+1 <%) + (=1)Eay1(2).

z

By combining the equations (2.2) and (2.9), we arrive at the desired result.
(I

Theorem 2.5. Let Imz > 0 and a € C. Then, we have

)+ imrn (—1) = — i1+ () B (e) - S (2 1)

T z oz
—¢(~a) ((1)@ - z11+> cot -

Proof. If we consider z — —1/z in Theorem 2.1, we get

Ya <%) = %% Fi(=1)az % ot % + ﬁga (%)

or

(2.10)

1 1 i ((1—a) . a ) 1 1
— [ ) =Y 1)t 2 — g [ —=).
e (3) = —m Syt e T e ()
By combining equations (2.3) and (2.10), we have

(14 (“1)) By () = L0 =9) (1 - i) i <(1)a - Z11+> cot ™2

7 ((—a) \z 2z

e {ga<z> —_—— (—1) } |

After some elementary calculation, we arrive at the desired result. O

In Theorem 2.5, we also show that there exist the functions ¢* # 0 and
f* # 0 such that they satisfies the following functional equation:

1 1
0:(2) - ot (1) = Ji)
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Remark 2.6. By using Theorem 2.5, we get

iy s foue) + o (1)

- “ —a) 1 1 Ta
= —ilim(1+ (-1)*)Eqy1(z) — lim { =) ~ et cot 5

a—0 a—0 4

I TR

()

— log 2 1-— 1
(otlog2nz) g A=) 1 e mel
e
By using the properties of (1.1) and (1.2) related to zeta function, we get

lim {—%C(l—a) (—1)* Cot%} Sy 2 G- (=D

or

= —2iE(2) -2

v a—0

a—0 ™ T a—0 a
2
- 21.
m

Therefore, we arrive at the following result:

1 1 . —v + log 27z
90(2) + ~90 <;) =L 4il+ Bi(2) + T2

4

In the following theorem, we consider

1 z
fa(z) = (Z + 1)1+aga <Z + 1> +ga(z + 1) _ga(z)'

Theorem 2.7. The function f, has Taylor series as follows:

fule) = S cay oy cor T8 - S g (mrayy Lo
2

s
n=0

where |z] < 1.

Proof. We know that

(2.11) > (=1t = ! ,

where |z] < 1.
If we take the a-th derivative of the above series, we have

(2.12) i(q)” ( ”Z“ ) = m

n=0

where |z] < 1.
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Then, by using the series (2.11) and (2.12), we get

falz) = % Z(_l)nzn +¢(—a) cot % Z(_l)n ( n+a ) o
n=0 n=0

S (e )
A (- ()

Feaeon I (M)
(1)

0 nf{ Nnta n
+§(—a)c0t72(—1) ( a )z :
Therefore, we obtain the Taylor series of function f, around zg = 0. O

3. Generalized difference formulas related to function g,

In this section, by using the properties of the function v,, we obtain some
generalized difference formulas related to the function g,.

Lemma 3.1. Let N € N and a € C. Then we have
N4+1

(3.1) Ya(z) = Ya(z + N +1) = Z (Z+2,)1+a7/’a (Z;rik 1> '

k=1

Proof. We use the iteration z — z 4+ 1 as follows:

bal2) = alz +1) = — wa( : )

(z+1)1+a Z+].
1 z+1
’l/)a(ZjL].)*i/)a(ZﬁLQ): (z+2)1+a"/)a <Z+2)7
1 z+2
wa(z+2)—¢a(2+3): (Z+3)1+awa (Z+3)’
1 z+ N
Ya(z+ N) —tho(2 + N+ 1) = (z—l—N—i—l)l"'“wa <Z+N+1>'

By combining the above equations, we arrive at the desired result. (]
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Theorem 3.2. Let N € N and a € C. Then we have

%? 1 st k-1
k=1 (z+k)1+aga z+k

%%é%%%ﬁ?*QJ@gAZ+N+1)

Py a)cot 5t (1 —a) 1
Jrz{ z—l—k: 7r(z+k—1)}(z—|—k:)“'

Proof. By using the equations (2.3) and (3.1), we have

N+1 1 i(z+k)C(1—a) i(z—i—k;)l'*‘a ra
; (z+ k)tta {W(z—i—kz—l)g(_a) T Grk_1)te cot
i z4+k—1
+C(a)ga( 2tk )}
i((N+1)¢1—a) . 1 )
7z(z 4+ N+ 1){(—a) +Z{(z+N+1)1+a - Zl+a}

+ g(%a){ga@ a2+ N+ 1)}

or
23 1 24+ k-1
P z—i—k)l‘“lga z+k
9a(2) = ga(z + N +1)
(N+1)¢(1—a) 1 1 Ta
P — — t -
i mz(z+ N + 1) +¢(=a) (z+ N+ 1)t+a  lta Ot
N NZH cot H ¢(1—a)
z+k 1+“ m(z+ k) (z+k—1)
because of
(z+ N 1)lte glte (g4 | —1)te B = (24 k)it
Then, we arrive at the desired result. ([l

In Theorem 3.2, taking the limit a — 0, we have

%f 1 z+k—1
G+ \ o1k

k=1

(N +1)¢(1—a)
= 90(2) — go(z+N+1)+i1%0 mz(z+ N +1)
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+ lim

a—0
k=1

N+1{§(—a)c0t% ¢(1—a) }
(z+ k) w(z+k—1)

NA1 Ta
=g0(2) —go(z+ N +1)— lim 1 {COt7+§(1_a)}

a=0 £~ (2 + k) 2 T
because of
z (z+N+1) = (z4+k—-1) Pt (z+ k)
and ¢(0) = —1/2.
We know that
t Ta 1
(3.2) lim {CO 2 < a)} _y
a—0 2 T ™

Therefore, we obtain the following corollary:

Corollary 3.3. Let N € N. Then, we have
N+1

(3.3) go(z)—go(z"‘N""l):;(Zik){%—i_go (%k;l)}

By using the equation (2.4), for k € {1,2,..., N + 1}, we have
1 z+k—1
z+k¢0( 24k )

R I G Gl ) e

z+k Wi(zl—i;l) z+k
By summing from 1 to N + 1, we deduce from the above that
g:l L, (2Rt
2tk O( 24k )
B 2zvz+1{'y+log(27r<%kgl))}2i1vz+1 1 go<z+k1)
= mi(z +k—1) —atk z+k )

By using the equations (3.1) and (3.3), we get
Yo(z) —vo(z + N +1)

Nt1o o ((zEk=1
_ _Qi{go(z)_gO(Z+N+1)}+%]i 1 ggjfk ?f) ))

k=1
217%1 1 1
T = z4+k—1 z+4k)’
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After some elementary calculations, we arrive at the following corollary:
Corollary 3.4. Let N € N. Then, we have
Ni:l L (o (2R
- 1o P L.
— z+ k1% z+k

7(%%) +m{g0(2) — go(z + N + 1)}

™
- {to(2) = o(z + N +1)}.
Lemma 3.5. Let a, A € C and A\ # 0. Then, we have

Ya (%) 71/)’1(21{/\) — o+l Yo (2+A=1) = 1o (2 +))

3.4
+ v () va (225)
Proof. From equation (2.6), we know
Ya(2) —Wa(z41) 1
v (ﬁ) CES

For z — z/X (0 # A € C), we get
va(5) = ba (3+1) __x

v (zix) (z + A)ett

o+l
(z4+A—1+1)et+!
— o+l Yo (2 +A—=1) =g (24 ))
vo (42257)
Then, we have the desired result. (I
Theorem 3.6. Let a,\ € C and N € N. Then, we have

N ( 2+kA—1 )“a y (z+(k=1)N) (z+kA)C (1=a) =m(24kXN) T (—a) cot B¢ tm(z4(k—1)A) Heg, (2HETDY)
§ 2 (k—DA (z4HkA=1) (z+kA) ¢ (1—a) =7 (2+kA) T (—a) cot ZE+m(z+kA—1) T g, (2]
X

k=1 (1(1+A§A()1(_zi)l~f>\—l) - ((z+k)\l—1)1 7w~ (z+1\~,lx>ua) ((=a)cot 4 ga (z+ kA —1) — ga (2 + k)‘))
NA'79¢(1 —a) 1 1 Ta
= _ — t—
mz(z+ NX) + (z4+ N))lte  zlta G(=a)eo 2

5 (0 (3) - (557)):

Proof. From equation (3.4), we use the iteration z — z + X as follows:

Ya (£) —va () = )\a+1%{% (z4+A—=1) =g (z+ N},

PESDY
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Vo Zer)\
Yo () — v (52) = Wi(i;”?) {Wa (=420 = 1) = v (2 +20)}
@ z4+2X

Z+2)\
ta (52) = v (552) = A““iw“(””)) {ta (243X = 1) = ¢ha (= +3))}.,
z+3A

(M

v ()
ba (M) g () :)\a+1W{wa (z+NA—1) —¢q (z+ NA)}.
a 2+NX
By combining the above equations, we get
(3.5)
z+ (k=1
Yo (3) =t () R Ve (=42)
\a+1 ZW{%(Zva)\l)wa(erk)\)}.
k=1 Ya \ 4kX

By using the equation (2.3), we arrange the equation (3.5). Then, we arrive
at the desired result. O

In Theorem 3.6, taking the limit a — 0, we have

(z+kA) (lima 0 (C(1—a)+ 5 cot &) )+ (s+kA—1)go (ZE05

Z z+(k—1)X z+k-/\—1)
X (<Z+M)é+“71) limg_o (C(17r—a) + %cot L;) +go(z+EkX—1)—go(2+ k/\))

N ( ZrkA—1 ) ((ZJrk)\)(limago(C(l*a)Jr%CO‘S%))+”(Z+(’“*1)>\)gn(ﬂ%)>

k=1

N 5 C(l—a)+1 e +1 (z) 2+ NX
= im — — — —) - .
2+ NN aso\ 7 2 ) T\ ) T\ T

By using (3.2), we arrive at the following corollary:

Corollary 3.7. Let A € C and N € N. Then, we have
( A1 ) (v<z+m>+w<z+<k1>A>go(”:iki”>)

N
Z z+(k—1)A Y(z4+kXN)+m(z+kA—1)go (291
k=1 | X (ﬂ'(erk)\)Zerk)\fl) +90(z+kA=1) —go(2+ k)\))

= 3 (0 () e (557)
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