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ON QUANTUM CODES FROM CYCLIC CODES OVER A

CLASS OF NONCHAIN RINGS

Mustafa Sari and Irfan Siap

Abstract. In this paper, we extend the results given in [3] to a nonchain
ring Rp = Fp + vFp + · · · + vp−1

Fp, where vp = v and p is a prime.
We determine the structure of the cyclic codes of arbitrary length over
the ring Rp and study the structure of their duals. We classify cyclic
codes containing their duals over Rp by giving necessary and sufficient
conditions. Further, by taking advantage of the Gray map π defined in
[4], we give the parameters of the quantum codes of length pn over Fp

which are obtained from cyclic codes over Rp. Finally, we illustrate the
results by giving some examples.

1. Introduction

The advantage of quantum mechanics compared to classical mechanics led
researches to consider and study quantum communication and quantum com-
putation. Hence, instead of classical bits used in computers working by the
rules of classical mechanic, quantum bits or shortly qubits are proposed to be
studied. Due to the superposition state of qubits, theoretically qubits can store
more information in transition or storage compared to the classical case. While
qubits have some superiorities than classical bits, one of the main problems for
qubits is the decoherence that destroys the information in a superposition of
qubits. While it seems that the decoherence makes the quantum communica-
tion and computation challenging even impossible, however the quantum error
correcting codes (QEC) overcome this problem. The first solution to this prob-
lem was proposed by Shor by introducing a quantum error correcting code that
encoded one qubit to highly entangled state of nine qubits [13]. Later in [6],
Calderbank and Shor gave a method for constructing QEC from the classical
error correcting codes, where this construction is called CSS construction. In
[9], Gottesman defined the stabilizer quantum codes as the subspaces stabilized
by a subgroup of the group consisting of all quantum errors. He also showed
that stabilizer quantum codes include the QEC obtained by CSS construction.
In [14], a generalized construction for QEC which enables to obtain many new

Received July 9, 2015.
2010 Mathematics Subject Classification. 81P70, 94B15.
Key words and phrases. quantum codes, cyclic codes, gray map.

c©2016 Korean Mathematical Society

1617



1618 M. SARI AND I. SIAP

codes was given. In [5, 15], the problem of constructing QEC was carried over
the finite field with four elements F4. While the original QEC were over bi-
nary fields, QEC have been generalized to nonbinary cases [2, 10]. In [2], the
errors on Fq were defined and the notion of self-orthogonal codes over F4 and
binary quantum codes were generalized to self-orthogonal codes over Fq and
q-ary quantum codes. In [11], the authors gave a new but simple construction
for stabilizer codes which is based on syndrome assignment by classical parity-
check matrices. To give the exact parameters of a quantum code constructed
via CSS construction, it is enough to find a classical linear code containing
its dual. Hence, the conditions for linear codes containing their duals have
been investigated in [1, 3, 7, 12, 16]. In [1], the BCH codes containing their
Euclidean or Hermitian duals were studied and the quantum BCH codes were
obtained. In [16], the condition for cyclic codes over the ring F2 + uF2 + u2

F2

where u3 = 0 containing their duals are studied and moreover a Gray map from
F2 + uF2 + u2

F2 to F
3
2 which preserves the orthogonality is defined and binary

QEC are obtained as Gray images of these cyclic codes. In [12], the results
given in [16] were considered over the ring F2 + uF2 where u2 = u. By taking
the Gray images of some special cyclic codes over F2 + uF2, a class of binary
quantum codes were obtained. In [3], the findings in [12] are generalized to the
ring F3 + vF3 with v2 = 1 and a construction of a class of ternary quantum
codes is presented. Further, in [7], the conditions of cyclic codes over the ring
F2 + vF2 + v2F2 where v3 = v containing their duals are established and the a
class of binary QEC with its parameters is presented.

This paper is organized as follows: In Section 2, the basic definitions needed
in the next sections are given. In Section 3, the Gray map from Rn

p to F
pn
p

defined in [4] is stated and its properties are further studied. In Section 4, we
investigate the cyclic codes of arbitrary length over Rp and characterize the
structure of cyclic codes and their duals over Rp. We also determine the condi-
tions for cyclic codes over Rp containing their duals. Furthermore, we construct
a family of quantum error correcting codes over Fp by making advantage of the
Gray map. Finally, in Section 5, we conclude this paper by presenting some
examples.

2. Preliminaries

A code C of length n over Fq is a nonempty subset of Fn
q where Fq is a finite

field with q elements. A linear code C of length n over Fq is defined to be a
subspace of Fn

q . A linear code of length n and dimension k over Fq is denoted
by [n, k]q. Let x = (x1, x2, . . . , xn) be a vector in F

n
q . The Hamming weight

wH (x) of the vector x is defined as the number of nonzero coordinates of the
vector x, that is,

wH (x) = |{i : xi 6= 0, 1 ≤ i ≤ n}| .
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An element of a code C is called a codeword of C. The Hamming weight
wH (C) of a code C is the minimum nonzero weight of all codewords in C, i.e.,

wH (C) = min {wH (c) : 0 6= c ∈ C} .

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors in F
n
q . The

Hamming distance dH (x, y) between the vectors x and y is defined as

dH (x, y) = wH (x− y) .

The Hamming distance dH (C) of a code C is the minimum Hamming distance
between all different codewords of C, i.e.,

dH (C) = min {dH (x, y) : x, y ∈ C, x 6= y} .

The notion |C| for a code C is the size of the code C. A code C over Fq having
the length n, the Hamming distance d is denoted by (n, |C| , d)q. A linear code
C over Fq of length n, the dimension k and the Hamming distance d is denoted
by [n, k, d]q where the symbols n, k and d are called the parameters of C. An

[n, k, d]q code is also an
(
n, qk, d

)
q
code. The operation “·” is defined as the

usual inner product between x and y in F
n
q , i.e., x ·y =

∑
i xiyi. The dual code

C⊥ of a linear code C of length n over Fq is the set

C⊥ =

{
x ∈ F

n
q : 〈x, c〉 =

n∑

i=1

xici =0, ∀c ∈ C

}
.

Note that if C is an [n, k]q code, then the dual code C⊥ is an [n, n− k]q code.
Linear codes over finite fields have significant role on constructing quantum

codes. In what follows we are going to explain this construction by establishing
necessary definitions first. Let q be a prime power and let Hq (C) be a q
dimensional Hilbert vector space which represents the states of a quantum
mechanical system. Let x range over the elements of a finite field Fq and let |x〉
denote the vectors of a distinguished orthonormal basis of Hq (C)[10]. Denote
H

n
q (C) as the n-fold tensor product of Hq (C), i.e.,

H
n
q (C) = Hq (C)⊗ · · · ⊗Hq (C)︸ ︷︷ ︸

n times

.

Then H
n
q (C) is a qn dimensional Hilbert space. A quantum code of length n

and dimension k over Fq is defined to be the qk dimensional subspace of Hn
q (C)

and simply denoted by [[n, k]]q. Recall that a space spanned by all vectors |ϕ〉
where ϕ ∈ F

n
q is a Hilbert space of qn dimension. Before giving the well-known

CSS construction, we state how one can construct a quantum error correcting
code from classical linear codes by CSS construction. Let C1 and C be two
linear codes over Fq such that C1 ⊆ C. For each additive coset D of C1 in C,
define the codeword

|ϕ〉 =
1

|C1|

∑

x∈D

|x〉.
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Then, the subspace spanned by all codewords |ϕ〉 is called a quantum error
correcting code obtained from two classical linear codes via CSS construction
method.

Theorem 2.1 (CSS Construction). Let C1 and C2 be two linear codes over

Fq with parameters [n, k1, d1]q and [n, k2, d2]q such that C2 ⊆ C1, respec-

tively. Then, there exists a quantum error correcting code with the parameters[[
n, k1 − k2,min

{
d1, d

⊥
2

}]]
q
where d⊥2 is the Hamming distance of the dual code

C⊥
2 . Moreover, if C2 = C⊥

1 , then there exists a quantum error correcting code

with parameters [[n, 2k1 − n, d1]]q.

Now, in order to get into our construction and findings which rely on a
specific ring, we introduce the ring. Let p be a prime integer and let Rp =
Fp + vFp + · · ·+ vp−1

Fp where vp = v. The ring Rp is a commutative nonlocal
ring with the maximal ideals 〈v〉 , 〈v + 1〉 , . . . , 〈v + p− 1〉 and so the ring Rp is

a nonchain ring. Denote ji = v + i for all 0 ≤ i ≤ p − 1 and define νi =
vp

−v
ji

for 0 ≤ i ≤ p− 1. One can easily see that

Rp = 〈ν0〉 ⊕ 〈ν1〉 ⊕ · · · ⊕ 〈νp−1〉 .

Therefore, every element r ∈ Rp can be written uniquely as r = r0 + r1 + · · ·+
rp−1, where ri ∈ 〈fi〉 for 0 ≤ i ≤ p − 1. The definitions of the codes over the
ring Rp are similar to the codes over finite field. A code C over Rp of length
n is a nonempty subset of Rn. A linear code C of length n over the ring Rp is
an Rp-submodule of Rn

p . The dual code C⊥ of a code C over Rp is given by

C⊥ =

{
y ∈ Rn

p : 〈x, y〉 =
n−1∑

i=0

xiyi = 0, ∀x ∈ C

}
.

If C is a linear code over Rp, then the dual code C⊥ is also linear code over
Rp. A code C over Rp of length n and the size M is denoted by (n,M). One
can find more details for the structures of the ring Rp and the linear codes over
Rp in [8].

In the rest of this paper, we denote Rp = Fp + vFp + · · · + vp−1
Fp where

vp = v and p is a prime number.

3. A gray map from R
n

p
to F

pn

p

In [4], the authors defined a Gray map from Rn
p to F

pn
p and studied its

properties. In this section, we state and study the properties of the Gray
map relevant to our goal. We also reprove that this Gray map preserves the
orthogonality with respect to the usual inner product by a method different
than the one given in [4].

Definition 3.1. Let the map µ : Rp → F
p
p be defined as

r (v) = r0 + r1v + · · ·+ rp−1v
p−1 → (r (0) , r (1) , . . . , r (p− 1))
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for all r0 + r1v + · · ·+ rp−1v
p−1 ∈ Rp and extend the map µ to π : Rn

p → F
pn
p

componentwise as in the usual way, i.e., for all (c0, c1, . . . , cn−1) ∈ Rn

π ((c0, c1, . . . , cn−1)) = (µ (c0) , µ (c1) , . . . , µ (cn−1)) .

We call π the Gray map from Rn to F
pn
p .

Note that π (r) = (r (0) , r (1) , . . . , r (p− 1)) = (r0, r1, . . . , rp−1)A
T where

A =




1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2p−1

...
...

...
...

...

1 p− 1 (p− 1)2 · · · (p− 1)p−1




p×p

.

Proposition 3.2. For all 1 ≤ j ≤ p− 2,
∑p−1

i=1 ij ≡ 0 (modp).

Proof. Let Zp be the set of integers modulo p and Z
∗
p = Zp − {0}. Suppose

that α is a generator of Z∗
p and p− 1 = jk. Since ij ’s run through k times the

elements of the subgroup
〈
αj

〉
and the order of αj is k, we get

p−1∑

i=1

ij = k
∑

x∈〈αj〉

x = k
(
1 + αj + · · ·+ α(k−1)j

)
= k

αkj − 1

αj − 1
≡ 0 (modp).

�

Lemma 3.3. The matrix A is invertible.

Proof. Let Ai be the ith column of the matrix A. See that

AT
i Aj =

p−1∑

k=1

ki+j−2 (modp) .

Clearly, for i and j providing that i + j = p + 1 and for the case i = j = p,
AT

i Aj = p − 1. Proposition 3.2 implies that AT
i Aj = 0 for the other cases.

Then

(3.1) ATA = (p− 1)




0 0 · · · · · · 0 1

0 0
. . . 0 1 0

...
...

. . . . .
.

0
...

... 0 . .
. . . .

. . .
...

0 1 0 · · · 0 0
1 0 · · · · · · 0 1




.

Hence the matrix A has full rank and so is invertible. �

By Lemma 3.3 and the definitions the following theorem follows.

Theorem 3.4. If C is a linear code over Rp, then so is π (C) over Fp. More-

over, |C| = |π (C)|.
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The next theorem plays an important role for the construction of quantum
codes from codes over Rp.

Theorem 3.5. The Gray map π is a map preserving the orthogonality from

Rn
p to F

pn
p .

Proof. It is enough to show for only n = 1 by linearity. Let r = r0+ r1v+ · · ·+
rp−1v

p−1 and s = s0 + s1v + · · · + sp−1v
p−1 be two elements in Rp such that

r⊥s. Then, r⊥s implies that

(3.2) r0sp−1 + r1sp−2 + · · ·+ rp−2s1 + rp−1s0 + rp−1sp−1 = 0.

We observe that AiA
T
j gives the number of ri−1sj−1’s and rj−1si−1’s appearing

in 〈π (r) , π (s)〉. By considering Equation 3.2 and it is sufficient to prove that

〈π (r) , π (s)〉

= (p− 1) (r0sp−1 + r1sp−2 + · · ·+ rp−2s1 + rp−1s0 + rp−1sp−1) (modp) .

Let ti,j denote the number of ri−1sj−1’s appearing in 〈π (r) , π (s)〉, i.e., AT
i Aj =

(ti,j). By (3.1), we have

ti,j =





p− 1, i+ j = p+ 1
p− 1, i = j = p
0, otherwise

which completes the proof. �

By Theorem 3.4 and Theorem 3.5 we obtain the following corollary as a
consequence.

Corollary 3.6. If C is a linear code containing its dual over Rp, then so is

π (C) over Fp.

Proof. Let C be a code over Rp such that C⊥ ⊆ C. Clearly, π
(
C⊥

)
⊆ π (C).

Theorem 3.5 implies that π
(
C⊥

)
⊆ π(C)

⊥
. Comparing the cardinalities of

π
(
C⊥

)
and π(C)

⊥
, one can get that π

(
C⊥

)
= π(C)

⊥
and so π(C)

⊥ ⊆ π (C).
�

We define the Lee weight wL (r) of an element r ∈ R to be wL (r) =
wH (π (r)). The Lee weight is extended to Rn componentwise, i.e., the Lee
weight of a vector r = (r0, r1, . . . , rn−1) in Rn is

wL (r) =
n−1∑

i=0

wL (ri).

The Lee distance dL (r, s) between two vectors r = (r0, r1, . . . , rn−1) and s =
(s0, s1, . . . , sn−1) in Rn is defined to be as

dL (r, s) = wL (r − s) .

Then, the followings are immediate.
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Theorem 3.7. The Gray map π is a distance-preserving map from (Rn, dL)
and

(
F
pn
p , dH

)
.

Corollary 3.8. If C is an (n, |C| , dL) linear code over Rp, then π (C) is a

(pn, |C| , dL) linear code over Fp where |C| is the cardinality of the code C.

4. Quantum codes from cyclic codes over Rp

A code C of length n over the ring Rp (resp. Fq) is called cyclic if (cn−1, c0,
. . . , cn−2) is also a codeword in C for all codewords (c0, c1, . . . , cn−1) in C. It is
well-known that a cyclic code of length n over Rp (resp. Fq) corresponds to an
ideal in the quotient ring Rp [x]/(x

n − 1)(resp. Fq [x]/(x
n − 1)). Since every

ideal is principal in Fq [x]/(x
n − 1), for all cyclic codes C of length n over Fq,

C = 〈g (x)〉 for some monic polynomial g (x) in Fq [x]/(x
n − 1), where g (x) is

called the generator polynomial of the cyclic code C. To determine the cyclic
codes over Rp of length n, we need to investigate the ideal structure of the
quotient ring Rp [x]/(x

n − 1).
Note that every element r of the ring Rp can be expressed uniquely as

r = ν0λ0 + ν1λ1 + · · ·+ νp−1λp−1 for some λ0, λ1, . . . , λp−1 ∈ Fp. This leads to
the following lemma:

Lemma 4.1. A linear code C over Rp of length n has the form ν0C0⊕ ν1C1⊕
· · · ⊕ νp−1Cp−1, where C0, C1, . . . , Cp−1 are linear codes of length n over Fp.

Moreover, a cyclic code C over Rp of length n has the form ν0C0⊕ν1C1⊕· · ·⊕
νp−1Cp−1, where C0, C1, . . . , Cp−1 are cyclic codes of length n over Fp.

Also, we have the following:

Corollary 4.2. Let C = ν0C0 ⊕ ν1C1 ⊕ · · · ⊕ νp−1Cp−1 be a linear code over

Rp for some linear codes C0, C1, . . . , Cp−1 over Fp. Then, C is a cyclic code

of length n over Rp if and only if C0, C1, . . . , Cp−1 are cyclic codes of length n
over Fp.

Corollary 4.3. If C = ν0C0 ⊕ ν1C1 ⊕ · · · ⊕ νp−1Cp−1 is a cyclic code over

Rp of length n, then C = 〈ν0g0 (x) , ν1g1 (x) , . . . , νp−1gp−1 (x)〉 and |C| =

p
pn−

p−1∑

i=0

deg gi(x)
where gi (x)’s are the generator polynomials of Ci for i =

0, 1, . . . , p− 1, respectively.

The following lemma is necessary for the proof of Proposition 4.5.

Lemma 4.4. The followings hold:

(1) For all i, j ∈ {0, 1, . . . , p− 1} such that i 6= j, νiνj = 0.
(2) For all i ∈ {0, 1, . . . , p− 1}, ν2i = λνi for some nonzero λ ∈ Fp.

(3)
∑p−1

i=0 νi = −1.

Proof. (1) It is clear from the definition of νi.
(2) Since ν2i ∈ 〈νi〉 = {λνi : λ ∈ Fp}, it is enough to show that ν2i 6= 0 for

all 0 ≤ i ≤ p − 1. For the case p = 2 and i = 0, ν0 = v + 1 and so ν20 =
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(v + 1)
2
= f0 6= 0. For the case odd prime p and i = 0, ν0 = vp

−v
v

= vp−1 − 1

and so ν20 =
(
vp−1 − 1

)2
= −2

(
vp−1 − 1

)
= −2ν0 6= 0. For the case i 6= 0 and

all primes p, νi =
vp

−v
v+i

= v.
p−1∏
j=1
j 6=i

v + j. Since the constant term of
p−1∏
j=0
j 6=i

v + j is

equal to
p−1∏
j=0
j 6=i

j (modp). Since (j, p) = 1 for all 1 ≤ j ≤ p− 1,
p−1∏
j=0
j 6=i

j (modp) 6= 0.

Hence, ν2i 6= 0 and so ν2i = λfi for some nonzero element λ in Fp.

(3) Note that ν0 = vp−1 − 1 and νi =
p−2∑
j=0

(−1)jijvp−(j+1) for 1 ≤ i ≤ p− 1.

Then,

p−1∑

i=0

νi = ν0+

p−1∑

i=1

p−2∑

j=0

(−1)jijvp−(j+1) = −1 +

p−1∑

i=1

p−2∑

j=1

(−1)jijvp−(j+1).

Since the coefficient of vp−(j+1) for 1 ≤ j ≤ p − 2 is equal to (−1)
j
p−1∑
i=1

ij, it

remains to show that
p−1∑
i=1

ij ≡ 0 (modp) for the proof. By Proposition 3.2, we

are done. �

We are now ready to give the exact characterization of the cyclic codes over
Rp.

Proposition 4.5. Let C be a cyclic code over Rp of length n and suppose

that C = ν0C0 ⊕ ν1C1 ⊕ · · · ⊕ νp−1Cp−1 for some cyclic codes C0, C1, . . . , Cp−1

of length n over Fp. Then, C is principal, i.e., C = 〈g (x)〉 where g (x) =
ν0g0 (x) + ν1g1 (x)+ · · ·+ νp−1gp−1 (x) and Ci = 〈gi (x)〉 for i = 1, 2, . . . , p− 1.
Furthermore, if g0 (x) = g1 (x) = · · · = gp−1 (x), then C = 〈g0 (x)〉.

Proof. Since

C = ν0C0 ⊕ ν1C1 ⊕ · · · ⊕ νp−1Cp−1,

C = 〈ν0g0 (x) , ν1g1 (x) , . . . , νp−1gp−1 (x)〉 .

Define g (x) = ν0g0 (x) + ν1g1 (x) + · · · + νp−1gp−1 (x). Clearly, 〈g (x)〉 ⊆ C.
Conversely, by Lemma 4.4 for each i ∈ {0, 1, . . . , p− 1}, ν2i = λνi and νiνj = 0
when i 6= j. Then, for each i ∈ {0, 1, . . . , p− 1}

νig (x) = ν2i gi (x) = λνigi (x) ∈ C

and so νigi (x) ∈ C. This implies that C ⊆ 〈g (x)〉. Hence, C = 〈g (x)〉. The
last assertion directly follows from the fact ν0 + ν1 + · · ·+ νp−1 = −1. �

Similar to the case for the cyclic codes over finite field, the dual code of
a cyclic code over Rp is also a cyclic code over Rp. We now investigate the
structure of the dual code of a cyclic code over Rp.
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Proposition 4.6. Let C = 〈ν0g0 (x) + ν1g1 (x) + · · ·+ νp−1gp−1 (x)〉 be a

cyclic code over Rp of length n. Then

C⊥ =
〈
ν0h

r
0 (x) + ν0h

r
0 (x) + · · ·+ νp−1h

r
p−1 (x)

〉
,

where hi (x) gi (x) = xn − 1 for i = 0, 1, . . . , p− 1 and
∣∣C⊥

∣∣ = p

p−1∑

i=0

deg gi(x)
.

Proof. Let Ci = 〈gi (x)〉, i = 0, 1, . . . , p− 1. Recall that for each i ∈ {0, 1, . . .,
p − 1}, C⊥

i = 〈hr
i (x)〉 where xn − 1 = gi (x) hi (x). Define the ideal A =〈

ν0h
r
0 (x) , ν1h

r
1 (x) , . . . , νp−1h

r
p−1 (x)

〉
. Since νigi (x) νjhj (x) = 0 for all 0 ≤

i, j ≤ p− 1, we get A ⊆ C⊥. By comparing the cardinalities of A and C⊥, we
conclude that A = C⊥. By Proposition 4.5,

C⊥ =
〈
ν0h

r
0 (x) + ν1h

r
1 (x) + · · ·+ νp−1h

r
p−1 (x)

〉
. �

Next, we state the well-known fact for cyclic codes over finite fields.

Lemma 4.7. Let C be a cyclic code with generator polynomial g (x) over finite
field where g (x) h (x) = xn − 1. Then,

C⊥ ⊆ C ⇔ h (x)hr (x) ≡ 0 (modxn − 1)

or equivalently

C⊥ ⊆ C ⇔ xn − 1 ≡ 0 (modg (x) gr (x)) .

Now, we are ready to explore cyclic codes over Rp of length n containing
their duals.

Lemma 4.8. Let C = 〈g (x)〉 be a cyclic code over Rp of length n, where g (x) =
ν0g0 (x) + ν1g1 (x)+ · · ·+ νp−1gp−1 (x) for some polynomials g1 (x) , g2 (x) , . . .,
g3 (x) over Fp. Then,

C⊥ ⊆ C ⇔ xn − 1 ≡ 0 (modgi (x) g
r
i (x)) , i = 0, 1, . . . , p− 1.

Proof. Since C = 〈g (x)〉 and g (x) = ν0g0 (x) + ν1g1 (x) + · · · + νp−1gp−1 (x),
C = ν0C0 ⊕ ν1C1 ⊕ · · · ⊕ νp−1Cp−1 where Ci = 〈gi (x)〉 for 0 ≤ i ≤ p − 1.
Suppose that C contains its dual. Then, for each 0 ≤ i ≤ p− 1

C⊥ (mod (ν0, ν1, . . . , νi−1, νi+1, . . . , νp−1))

⊆ C (mod (ν0, ν1, . . . , νi−1, νi+1, . . . , νp−1)) .

This implies that νiC
⊥
i ⊆ νiCi and so C⊥

i ⊆ Ci for all 0 ≤ i ≤ p−1. By Lemma
4.7, one direction is complete. Conversely, if xn − 1 ≡ 0 (modgi (x) g

r
i (x)) for

i = 0, 1, . . . , p− 1, then C⊥
i ⊆ Ci and so 〈νihr

i 〉 ⊆ 〈νigi〉 for i = 0, 1, . . . , p− 1.
This implies that

〈
ν0h

r
0, ν1h

r
1, . . . , νp−1h

r
p−1

〉
⊆ 〈ν0g0, ν1g1, . . . , νp−1gp−1〉 .

Hence, C⊥ ⊆ C. �

By Lemma 4.8, we have the following theorem.
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Theorem 4.9. Let C = ν0C0 ⊕ ν1C1 ⊕ · · · ⊕ νp−1Cp−1 be a cyclic code over

Rp. Then,

C⊥ ⊆ C ⇔ C⊥

i ⊆ Ci, i = 0, 1, . . . , p− 1.

Combining Theorem 4.9, Corollary 3.6 and Theorem 2.1, we give the pa-
rameters of quantum codes obtained from the cyclic codes over Rp containing
their duals.

Theorem 4.10. Let C = ν0C0 ⊕ ν1C1 ⊕ · · · ⊕ νp−1Cp−1 be a cyclic code

over Rp of length n, where for each i ∈ {0, 1, . . . , p− 1}, Ci = 〈gi (x)〉, where
g (x)|xn − 1 over Fp. If C⊥

i ⊆ Ci for i = 0, 1, . . . , p − 1, then there exists a

quantum code with the parameters [[pn, pn− 2t, dL]]p where t =
∑p−1

i=0 deg gi (x)
and dL is the minimum Lee distance of the code C.

Now, we give some examples to illustrate what we discuss in this paper.
Note that since the characteristics of Fp and the ring Rp are the same, xn − 1
has the same factorization over Fp and the ring Rp.

Example 4.11. Over F2, x7 − 1 = (x+ 1)
(
x3 + x+ 1

) (
x3 + x2 + 1

)
. Let

g0 (x) = g1 (x) =
(
x3 + x+ 1

)
. Then, by Proposition 4.6, C =

〈
x3 + x+ 1

〉
.

Since
(
x3 + x+ 1

) (
x3 + x2 + 1

)∣∣ x7 − 1, C⊥ ⊆ C and so Corollary 3.6 implies

that π(C)
⊥ ⊆ π (C). By a computer programme, π (C) is a [14, 8, 3]2 linear

code. Hence, by Theorem 4.9, we get a [[14, 2, 3]]2 quantum code.

Example 4.12. Over F3, x
3 − 1 = (x+ 2)3. Let g0 (x) = g1 (x) = g2 (x) =

x + 2. Then, by Proposition 4.6, C = 〈x+ 2〉. Since (x+ 2) (2x+ 1) =

−(x+ 2)
2
∣∣∣x3 − 1, C⊥ ⊆ C and so Corollary 3.6 implies that π(C)

⊥ ⊆ π (C).

By a computer programme, π (C) is a [9, 6, 2]3 linear code. Hence, by Theorem
4.9, we get a [[9, 3, 2]]3 quantum code.

Example 4.13. Over F3, x
6 − 1 =

(
x2 − 1

)3
= (x+ 1)

3
(x+ 2)

3
. Some of

quantum codes over F3 of length 18 obtained by Theorem 4.9 are presented in
Table 1.

Example 4.14. Over F5, x5 − 1 = (x+ 4)
5
. Let g0 (x) = · · · = g4 (x) =

x + 4. Then, by Proposition 4.6, C = 〈x+ 4〉. Since (x+ 4) (4x+ 1) =

−(x+ 4)2
∣∣∣x5−1, C⊥ ⊆ C and so Corollary 3.6 implies that π(C)⊥ ⊆ π (C). By

a computer programme, π (C) is a [25, 20, 2]5 linear code. Hence, by Theorem

4.9, we get a [[25, 15, 2]]5 quantum code. Let g1 (x) = · · · = g5 (x) = (x+ 4)
2
.

Then, by Proposition 4.6, C =
〈
(x+ 4)

2
〉
. Since g0 (x) g

r
0 (x) = (x+ 4)

4
∣∣∣x5 −

1, C⊥ ⊆ C and so Corollary 3.6 implies that π(C)⊥ ⊆ π (C). By a computer
programme, π (C) is a [25, 15, 3]5 linear code. Hence, by Theorem 4.9, we get
a [[25, 5, 3]]5 quantum code.
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Table 1. Some of the quantum codes over F3 obtained via
Theorem 4.9 in Example 4.13.

g0 (x) g1 (x) g2 (x) π (C) Quantum Code

x+ 2 x+ 2 x+ 2 [18, 15, 2]3 [[18, 12, 2]]3
x+ 1 x+ 1 x+ 1 [18, 15, 2]3 [[18, 12, 2]]3
x2 + 2 x2 + 2 x2 + 2 [18, 12, 2]3 [[18, 6, 2]]3
x+ 2 x+ 2 x+ 1 [18, 15, 2]3 [[18, 12, 2]]3

5. Conclusion

In this study we extend the findings obtained in [3] to a more general class
of nonchain rings Rp = Fp+ vFp+ · · ·+ vp−1

Fp, where v
p = v and p is a prime.

Firstly, we state the Gray map defined in [4] and its properties and reprove
that this Gray map preserves the orthogonality from Rn

p to F
pn
p . We give the

exact structure of cyclic codes and their duals over Rp of arbitrary length and
obtain a necessary and sufficient condition for the existence of a cyclic code over
Rp containing its dual. Taking the Gray images of cyclic codes over Rp with
the condition that they contain their duals, we construct a family of quantum
codes over Fp. Finally, we illustrate the results arising in this paper and give
some examples of quantum error correcting codes derived in Section 4.
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