References
- S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C. H. Yeang, M. Angelo, C. Ladd, M. Reich, E. Latulippe, J.P. Mesirov, T. Poggio, W. Gerald, M. Loda, E.S. Lander, and T. R. Golub, "Multiclass cancer diagnosis using tumor gene expression signatures", Proceeding of National Academic Science US, vol. 98, no. 26, pp. 15149-15154, 2001. https://doi.org/10.1073/pnas.211566398
- D. Koller and M. Sahami, "Toward optimal feature selection," In Proceedings of the Thirteenth International Conference on Machine Learning, pp. 284 - 292, Bari, Italy, 1996.
- Z. J Lee, "An integrated algorithm for gene selection and classification applied to microarray data of ovarian cancer," Artificial Intelligent in Medicine, vol. 42, no. 1, pp. 81-93, 2008. https://doi.org/10.1016/j.artmed.2007.09.004
- T.-C. Lin, R.-S. Liu, Y.-T. Chao, and S.-Y. Chen, "Multiclass Microarray Data Classification Using GA/ANN Method," in PRICAI 2006: Trends in Artificial Intelligence, vol. 4099, pp. 1037-1041, 2006.
- G. Piatetsky-Shapiro, P. Tamayo, K. Dnuggets, and U.M. Lowell, "Microarray Data Mining: Facing the Challenges," SIGKDD Explorations, vol. 5, no. 2, pp. 1-5, Dec. 2003.
- A.A. Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, A. Rosenwald, J.C. Boldrick, H. Sabet, T. Tran, X. Yu, J.I. Powell, L. Yang, G.E. Marti, T. Moore, J. Hudson, Jr., L. Lu, D.B. Lewis, R. Tibshirani, G. Sherlock, W.C. Chan, T.C. Greiner, D.D. Weisenburger, J.O. Armitage, R. Warnke, R. Levy, W. Wilson, M.R. Grever, J.C. Byrd, D. Botstein, P.O. Brown, and L.M. Staudt, "Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling," Nature, vol. 403, no. 6769, pp. 503- 511, 2000. https://doi.org/10.1038/35000501
- S.L. Pomeroy, P. Tamayo, M. Gaasenbeek, L.M. Sturla, M. Angelo, M.E. McLaughlin, J.Y. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D. Zagzag, J.M. Olson, T. Curran, C. Wetmore, J.A. Biegel, T. Poggio, S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S. Lander, and T.R. Golub, "Prediction of central nervous system embryonal tumor outcome based on gene expression," Nature, vol. 415, no. 6870, pp. 436-442, 2002. https://doi.org/10.1038/415436a
- M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J.A. Olson, Jr., J.R. Marks, and J.R. Nevins, "Predicting the clinical status of human breast cancer by using gene expression profiles," Proceeding of National Academic Science USA, vol. 98, no. 20, pp. 11462-11467, 2001. https://doi.org/10.1073/pnas.201162998
- S. Saraswathi, S. Sundaram, N. Sundararajan, M. Zimmermann, and M. Nilsen-Hamilton, "ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented", IEEE ACM Transaction on Computational Biology and Bioinformatics, vol. 8, No. 3, pp. 452 - 463, 2011. https://doi.org/10.1109/TCBB.2010.13
- I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene Selection for Cancer Classification using Support Vector Machines," Machine Learning, vol. 46, no. 1-3, pp. 389-422, 2002. https://doi.org/10.1023/A:1012487302797
- X. Zhou and D. Tuck, "MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data," Bioinformatics, vol. 23, no. 9, pp. 1106-1114, 2007. https://doi.org/10.1093/bioinformatics/btm036
- Y. Tang, Y.-Q. Zhang, and Z. Huang, "Development of Two-Stage SVM-RFE Gene Selection Strategy for Microarray Expression Data Analysis," IEEE/ACM Transaction Computational Biology and Bioinformatics, vol. 4, no. 3, pp. 365-381, 2007. https://doi.org/10.1109/TCBB.2007.70224
- Y. Wang, I.V. Tetko, H.A. Mark, E. Frank, A. Facius, K.F.X. Mayer, and H.W. Mewes, "Gene selection from microarray data for cancer classification - a machine learning approach," Computational Biology and Chemistry, vol. 29, no. 1, p. 37-46, Feb. 2005. https://doi.org/10.1016/j.compbiolchem.2004.11.001
- Vasily Sachnev, Saras Saraswathi, Rashid Niaz, Andrzej Kloczkowski and Sundaram Suresh, "Multi-class BCGA-ELM based classifier that identifies biomarkers associated with hallmarks of cancer", BMC Bioinformatics, vol. 16, no. 166, 2015
- G.-B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: theory and applications", Neurocomputing, vol. 70, no. 1-3, pp. 985990, 2006.
- S. Suresh, S. N. Omkar, V. Mani, T. N. G. Prakash, "Lift coefficient prediction at high angle of attack using recurrent neural network", Aerospace Science and Technology, vol. 7, pp. 595-602, 2003 https://doi.org/10.1016/S1270-9638(03)00053-1
- L. V. Ma, S. H. Park, J. H. Jang and J. H. Park, "Fuzzy Decision Making-based Recommendation Channel System using the Social Network Database," J. of Digital Contents Society, Vol.17, No.5, 2016
Cited by
- MLW-gcForest: A Multi-Weighted gcForest Model for Cancer Subtype Classification by Methylation Data vol.9, pp.17, 2016, https://doi.org/10.3390/app9173589