DOI QR코드

DOI QR Code

Catalytic Technology for NOx Abatement using Ammonia

암모니아를 환원제로 이용한 NOx 저감 촉매 기술

  • Park, Soon Hee (Super Ultra Low Energy & Emission Vehicle Center, Korea University) ;
  • Lee, Kwan-Young (Department of Chemical and Biological Engineering, Korea University) ;
  • Cho, Sung June (School of Chemical Engineering, Chonnam National University)
  • 박순희 (고려대학교 초저에너지 초저배출 자동차 사업단) ;
  • 이관영 (고려대학교 화공생명공학과) ;
  • 조성준 (전남대학교 화학공학부)
  • Received : 2016.11.06
  • Accepted : 2016.12.05
  • Published : 2016.12.30

Abstract

Three way catalyst has been used extensively for the exhaust gas treatment for the internal combustion gasoline engine. While, numerous research efforts have been directed to develop various technologies for the abatement of exhaust gas from diesel engine. Diesel engine operating under lean condition produces large amount of NOx and the corresponding catalytic technology employing vanadium supported titania using ammonia has been commercialized for heavy duty vehicle. Recently, the Cu catalyst supported on zeolite has been investigated for NOx abatement using ammonia because of its critical importance for ultra low emission vehicle. The current review shows the recent trend in research and development for zeolite based copper catalysts, which are mainly used as catalysts for selective catalytic reduction using ammonia, are one of the aftertreatment technologies for effectively removing nitrogen oxides from diesel exhaust.

가솔린 자동차의 내연기관 배기가스 처리를 위한 촉매로 삼원촉매가 널리 사용되고 있다. 반면 디젤 자동차의 배출 오염 물질 처리를 위해서는 다양한 기술들이 연구개발되고 있다. 디젤 자동차의 특징인 희박연소 조건에서 발생하는 질소산화물의 저감과 제거를 위해 티타니아에 담지된 바나듐 촉매가 상용화되어 있다. 바나듐 촉매를 이용한 질소산화물 저감기술은 암모니아를 환원제로 이용함으로써 대형 디젤 차량에 효과적으로 적용할 수 있다. 최근 활발하게 연구개발이 이루어지고 있는 구리가 이온 교환된 제올라이트 촉매는 초고연비 자동차 개발의 필수 기술로 인식되고 있다. 본 총설에서는 디젤 엔진의 배기가스 중 질소산화물을 효과적으로 제거하기 위한 후처리 기술 중 하나인 암모니아를 이용한 선택적 촉매 환원 반응의 촉매로 사용되는 구리가 이온 교환된 제올라이트 촉매와 관련한 최근 연구개발 동향을 소개하고자 한다.

Keywords

References

  1. http://www.dieselnet.com/standards (accessed Nov. 2016).
  2. Papadakis, V. G., Pliangos, C. A., Yentekakis, I. V., Verykios, X. E., and Vayenas, C. G., "Development of High Performance, Pd-Based, Three Way Catalysts," Catal. Today, 29, 71-75 (1996). https://doi.org/10.1016/0920-5861(95)00268-5
  3. Storey, J. M. E., Sluder, C. S., Lance, M. J., Styles, D., and Simko, S., "Exhaust Gas Recirculation Cooler Fouling in Diesel Applications: Fundamental Studies, Deposit Properties and Microstructure," Proceedings of International Conference on Heat Exchanger Fouling and Cleaning, Crete Island, Greece (June 2011).
  4. Takahashi, N., Shinjoh, H., Iijima, T., Suzuki, T., Yamazaki, K., Yokota, K., Suzuki, H., Miyoshi, N., Matsumoto, S., Tanizawa, T., Tanaka, T., Tateishi, S.-S., and Kasahara, K., "The New Concept 3-Way Catalyst for Automotive Lean- Burn Engine: $NO_x$ Storage and Reduction Catalyst," Catal. Today, 27, 63-69 (1996). https://doi.org/10.1016/0920-5861(95)00173-5
  5. Elbouazzaoui, S., Corbos, E. C., Courtois, X., Marecot, P., and Duprez, D., "A Study of the Deactivation by Sulfur and Regeneration of a Model NSR $Pt/Ba/Al_2O_3$ Catalyst," Appl. Catal. B: Environ., 61, 236-243 (2005). https://doi.org/10.1016/j.apcatb.2005.05.012
  6. Yang, M., Li, Y., Wang, J., and Shen, M., "NOx Removal Efficiency and Ammonia Selectivity During the NOx Storage-Reduction Process over Pt/BaO (Fe, Mn, Ce)/$Al_2O_3$ Model Catalysts. Part II: Influence of Ce and Mn-Ce Addition," Appl. Catal. B: Environ., 102, 362-371 (2011). https://doi.org/10.1016/j.apcatb.2010.12.043
  7. Takeuchi, M., and Matsumoto, S., "NOx Storage-Reduction Catalysts for Gasoline Engines," Top. Catal., 28, 1-4 (2004). https://doi.org/10.1023/B:TOCA.0000024454.00184.ee
  8. Chaugule, S. S., Yezerets, A., Currier, N. W., Ribeiro, F. H., and Delgass, W. N., "'Fast' NOx Storage on $Pt/BaO/{\gamma}-Al_2O_3$ Lean NOx Traps with $NO_2\;+\;O_2\;and\;NO\;+\;O_2$: Effects of Pt, Ba Loading," Catal. Today, 151, 291-303 (2010). https://doi.org/10.1016/j.cattod.2010.02.024
  9. Elbouazzaoui, S., Corbos, E. C., Courtois, X., Marecot, P., and Duprez, D., "A Study of the Deactivation by Sulfur and Regeneration of a Model NSR $Pt/Ba/Al_2O_3$ Catalyst," Appl. Catal. B: Environ., 61, 236-243 (2005). https://doi.org/10.1016/j.apcatb.2005.05.012
  10. Luo, J.-Y., Kisinger, D., Abedi, A., and Epling, W. S., "Sulfur Release from a Model $Pt/Al_2O_3$ Diesel Oxidation Catalyst: Temperature-Programmed and Step-Response Techniques Characterization," Appl. Catal. A: General, 383, 182-191 (2010). https://doi.org/10.1016/j.apcata.2010.05.049
  11. Park, S. M., "Selective Catalytic Reduction of Nitrogen Oxides Promoted by Storage Function," Ph.D. Dissertation, Chonnam National University, Gwangju (2010).
  12. Burch, R., Breen, J. P., and Meunier, F. C., "A Review of the Selective Reduction of NOx with Hydrocarbon under Lean-Burn Conditions with Non-Zeolitic Oxide and Platinum Metal Catalysts," Appl. Catal. B: Environ, 39, 283-303 (2002). https://doi.org/10.1016/S0926-3373(02)00118-2
  13. Kaspar, J., Fornasiero, P., and Hickey, N., "Automotive Catalytic Converters: Current Status and Some Perspectives," Catal. Today, 77, 419-449 (2003). https://doi.org/10.1016/S0920-5861(02)00384-X
  14. Komvokis, V. G., Iliopoulou, E. F., Vasalos, I. A., Triantafyllidis, K. S., and Marshall, C. L., "Development of Optimized Cu- ZSM-5 DeNOx Catalytic Materials both for HC-SCR Applications and as FCC Catalytic Additives," Appl. Catal. A: Gen., 325, 345-352 (2007). https://doi.org/10.1016/j.apcata.2007.02.035
  15. Shichi, A., Katagi, K., Satsuma, A., and Hattori, T., "Influence of Intracrystalline Diffusion on the Selective Catalytic Reduction of NO by Hydrocarbon over Cu-MFI Zeolite," Appl. Catal. B: Environ., 24, 97-105 (2000). https://doi.org/10.1016/S0926-3373(99)00096-X
  16. Shichi, A., Statsuma, A., and Hattori, T., "Influence of Hydrocarbon Molecular Size on the Selective Catalytic Reduction of NO by Hydrocarbon over Cu-MFI Zeolite," Appl. Catal. A: Gen., 207, 315-321 (2001). https://doi.org/10.1016/S0926-860X(00)00661-X
  17. Liu, Z., and Woo, S. I., Recent Advances in Catalytic $DeNO_x$ Science and Technology, Catal. Rev., 48(1), 43-89 (2006). https://doi.org/10.1080/01614940500439891
  18. Pârvulescu, V. I., Grange, P., and Delmon, B., "Catalytic Removal of NO," Catal. Today, 46, 233-316 (1998). https://doi.org/10.1016/S0920-5861(98)00399-X
  19. Grossale, A., Nova, I., and Tronconi, E., "Study of a Fezeolite-based System as $NH_3$-SCR Catalyst for Diesel Exhaust Aftertreatment," Catal. Today, 136, 18-27 (2008). https://doi.org/10.1016/j.cattod.2007.10.117
  20. Nova, I., Ciardelli, C., Tronconi, E., Chatterjee, D., and Weibel, M., "$NH_3-NO/NO_2$ SCR for Diesel Exhausts after Treatment: Mechanism and Modelling of a Catalytic Converter," Top. Catal., 42-43, 43-46 (2007). https://doi.org/10.1007/s11244-007-0148-4
  21. Grossale, A., Nova, I., and Tronconi, E., "Study of a Fe-zeolitebased System as $NH_3$-SCR Catalyst for Diesel Exhaust Aftertreatment," Catal. Today, 136, 18-27 (2008). https://doi.org/10.1016/j.cattod.2007.10.117
  22. Schuler, A., Votsmeier, M., Kiwic, P., Gieshoff, J., Hautpmannb, W., Drochner, A., and Vogel, H., "$NH_3$-SCR on Fe Zeolite Catalysts-From Model Setup to $NH_3$ Dosing," Chem. Eng. J., 154, 333-340 (2009). https://doi.org/10.1016/j.cej.2009.02.037
  23. Chen, L., Li, J., Gea, M., and Zhu, R. "Enhanced Activity of Tungsten Modified $CeO_2/TiO_2$ for Selective Catalytic Reduction of NOx with Ammonia," Catal. Today, 153, 77-83 (2010). https://doi.org/10.1016/j.cattod.2010.01.062
  24. Kim, M. H., "Performance Management of a DeNOx System for Stationary Sources and Regeneration Strategies of DeNOx Catalysts," Clean Technol., 22(3), 141-153 (2016). https://doi.org/10.7464/ksct.2016.22.3.141
  25. Yates, M., Martin, J. A., Martin-Luengo, M. A., Suarez, S., and Blanco, J., "$N_2O$ Formation in the Ammonia Oxidation and in the SCR Process with $V_2O_5-WO_3$ Catalysts," Catal. Today, 107-108, 120-125 (2005). https://doi.org/10.1016/j.cattod.2005.07.015
  26. Choo, S. T., Yim, S. D., Nam, I.-S., Ham, S.-W., and Lee, J.-B., "Effect of Promoters Including $WO_3$ and BaO on the Activity and Durability of $V_2O_5$/sulfated $TiO_2$ Catalyst for NO Reduction by $NH_3$," Appl. Catal. B: Environ., 44, 237-252 (2003). https://doi.org/10.1016/S0926-3373(03)00073-0
  27. Seo, C.-K., and Chio, B. C., "Physicochemical Characteristics According to Aging of Fe-Zeolite and $V_2O_5-WO_3-TiO_2$ SCR for Diesel Engines," J. Ind. Eng. Chem., 25, 239-249 (2015). https://doi.org/10.1016/j.jiec.2014.10.040
  28. Shan, W., Liu, F., He, H., Shi, X., and Zhang, C., "A Superior Ce-W-Ti Mixed Oxide Catalyst for the Selective Catalytic Reduction of NOx with $NH_3$," Appl. Catal. B: Environ., 115-116, 100-106 (2012). https://doi.org/10.1016/j.apcatb.2011.12.019
  29. Lietti, L., Nova, I., Ramis, G., Acqua, L. D., Busca, G., Giamello, E., Forzatti, P., and Bregani, F., "Characterization and Reactivity of $V_2O_5-MoO_3-TiO_2$ De-NOx SCR Catalysts," J. Catal., 187, 419-435 (1999). https://doi.org/10.1006/jcat.1999.2603
  30. Chen, L., Li, J., and Ge, M., "Promotional Effect of Ce-doped $V_2O_5-WO_3/TiO_2$ with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by $NH_3$," J. Phys. Chem. C, 113, 21177-21184 (2009). https://doi.org/10.1021/jp907109e
  31. Wang, Z., Li, X., Song, W., Chen, J., Li, T., and Feng, A., "Synergetic Promotional Effects Between Cerium Oxides and Manganese Oxides for $NH_3$-Selective Catalyst Reduction Over Ce-Mn/$TiO_2$," Mater. Express, 1(2), 167-175 (2011). https://doi.org/10.1166/mex.2011.1017
  32. Nova, I., Acqua, L., Lietti, L., Giamello, E., and Forzatti, P., "Study of Thermal Deactivation of a De-NOx Commercial Catalyst," Appl. Catal. B: Environ., 35, 31-42 (2001). https://doi.org/10.1016/S0926-3373(01)00229-6
  33. Saleh, R. Y., Wachs, I. E., Chan, S. S., and Chersich, C. C., "The Interaction of $V_2O_5\;with\;TiO_2$(Anatase): Catalyst Evolution with Calcination Temperature and O-Xylene Oxidation," J. Catal., 98, 102-114 (1986). https://doi.org/10.1016/0021-9517(86)90300-3
  34. Oliveri, G., Ramls, G., Busca, G., and Escribano, V. S., "Thermal Stability of Vanadia-Titania Catalysts," J. Mater. Chem., 3(12), 1239-1249 (1993). https://doi.org/10.1039/JM9930301239
  35. Madia, G., Elsener, M., Koebel, M., Raimondi, F., and Wokaun, A., "Thermal Stability of Vanadia-tungsta-titania Catalysts in the SCR Process," Appl. Catal. B: Environ., 39, 181-190 (2002). https://doi.org/10.1016/S0926-3373(02)00099-1
  36. Smirniotis, P. G., Sreekanth, P. M., Peña, D. A., and Jenkins, R. G., "Manganese Oxide Catalysts Supported on $TiO_2,\;Al_2O_3,\;and\;SiO_2$: A Comparison for Low-Temperature SCR of NO with $NH_3$," Ind. Eng. Chem. Res., 45, 6436-6443 (2006). https://doi.org/10.1021/ie060484t
  37. Li, Y., Cheng, H., Li, D., Qin, Y., Xei, Y., and Wang, S., "$WO_3/CeO_2-ZrO_2$, a Promising Catalyst for Selective Catalytic Reduction (SCR) of NOx with $NH_3$ in Diesel Exhaust," Chem. Commun., 1470-1472 (2008).
  38. Qi, G., and Yang, R. T., "Performance and Kinetics Study for Low-temperature SCR of NO with $NH_3$ over MnOx-$CeO_2$ Catalyst," J. Catal., 217, 434-441 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2
  39. Nie, J., Wu, X., Ma, Z., Xu, T., Si, Z., Chen, L., and Weng, D., "Tailored Temperature Window of MnOx-$CeO_2$ SCR Catalyst by Addition of Acidic Metal Oxides," Chin. J. Catal., 35, 1281-1288 (2014). https://doi.org/10.1016/S1872-2067(14)60106-6
  40. Peng, Y., Li, K., and Li, J., "Identification of the Active Sites on $CeO_2-WO_3$ Catalysts for SCR of NOx with NH3: An in situ IR and Raman Spectroscopy Study," Appl. Catal. B: Environ., 140-141, 483-492 (2013). https://doi.org/10.1016/j.apcatb.2013.04.043
  41. Lee, S. G., Lee, H. J., Song, I. H., Youn, S. H., Kim, D. H., and Cho, S. J., "Suppressed $N_2O$ Formation During $NH_3$ Selective Catalytic Reduction Using Vanadium on Zeolitic Microporous $TiO_2$," Sci. Rep. doi: 10.1038/srep12702.
  42. Iwamoto, M., Yahiro, H., Tanda, K., Mizuno, N., Mine, Y., and Kagawa, S., "Removal of Nitrogen Monoxide through a Novel Catalytic Process. 1. Decomposition on Excessively Copper Ion Exchanged ZSM-5 Zeolites," J. Phys. Chem., 95, 3727-3730 (1991). https://doi.org/10.1021/j100162a053
  43. Centi, G., and Perathoner, S., "Nature of Active Species in Copper-Based Catalysts and Their Chemistry of Transformation of Nitrogen Oxides," Appl. Catal. A: Gen., 132, 179-259 (1995). https://doi.org/10.1016/0926-860X(95)00154-9
  44. Tolonen, K. R., Maunula, T., Lomma, M., Huuhtanen, M., and Keiski, R. L., "The Effect of $N_2O$ on the Activity of Fresh and Aged zeolite Catalysts in the $NH_3$-SCR Reaction," Catal. Today, 100, 217-222 (2005). https://doi.org/10.1016/j.cattod.2004.09.056
  45. Kwak, J. H., Tonkyn, R. G., Kim, D. H., Szanyi, J., and Peden, C. H. F., "Excellent Activity and Selectivity of Cu-SSZ-13 in the Selective Catalytic Reduction of NOx with $NH_3$," J. Catal., 275, 187-190 (2010). https://doi.org/10.1016/j.jcat.2010.07.031
  46. Fickel, D. F., Addio, E. D., Lauterbach, J. A., and Lobo, R. F., "The Ammonia Selective Catalytic Reduction Activity of Copper-Exchanged Small-Pore Zeolites," Appl. Catal. B: Environ., 102, 441-448 (2011). https://doi.org/10.1016/j.apcatb.2010.12.022
  47. Shwan, S., Nedyalkova, R., Jansson, J., Korsgren, J., Olsson, L., Skoglundh, M., "Hydrothermal Stability of Fe-BEA as an $NH_3$-SCR Catalyst," Ind. Eng. Chem. Res., 51, 12762-12772 (2012). https://doi.org/10.1021/ie301516z
  48. Colombo, M., Nova, I., Tronconi, E., SchmeiBer, V., Konrad, B. B., and Zimmermann, L., "$NO/NO_2/N_2O-NH_3$ SCR Reactions over a Commercial Fe-Zeolite Catalyst for Diesel Exhaust Aftertreatment: Intrinsic Kinetics and Monolith Converter Modelling," Appl. Catal. B: Environ., 111-112, 106-118 (2012). https://doi.org/10.1016/j.apcatb.2011.09.023
  49. Frey, A. M., Mert, S., Due-Hansen, J., Fehrmann, R., and Christensen, C. H., "Fe-BEA Zeolite Catalysts for $NH_3$-SCR of NOx," Catal. Lett., 130, 1-8 (2009). https://doi.org/10.1007/s10562-009-9894-1
  50. Ha, H.-J., Hong, J.-H., Choi, J.-H., and Han, J.-D., "Selective Catalytic Reduction of NOx with Ammonia over Cu and Fe Promoted Zeolite Catalysts," Clean Technol., 19(3), 287-294 (2013). https://doi.org/10.7464/ksct.2013.19.3.287
  51. Long, R. Q., and Yang, R. T., "Selective Catalytic Reduction of NO with Ammonia over $Fe^{3+}$-Exchanged Mordenite (Fe-MOR): Catalytic Performance, Characterization, and Mechanistic Study," J. Catal., 207, 274-285 (2002). https://doi.org/10.1006/jcat.2002.3521
  52. Lee, J., Paratore, M., and Brown, D., "Evaluation of Cu-Based SCR/DPF Technology for Diesel Exhaust Emission Control," SAE Int. J. Fuels Lubr., 1(1), 96-101 (2009).
  53. Kwak, J. H., Tran, D., Burton, S. D., Szanyi, J., Lee, J. H., and Peden, C. H. F., "Effects of Hydrothermal Aging on $NH_3$-SCR Reaction over Cu/zeolites," J. Catal., 287, 203-209 (2012). https://doi.org/10.1016/j.jcat.2011.12.025
  54. Cavataio, G., Jen, H., Warner, J., and Girard, J., "Enhanced Durability of a Cu/Zeolite Based SCR Catalyst," SAE Int. J. Fuels Lubr., 1(1), 477-487 (2009).
  55. Bull, I., Boorse, R. S., Jaglowski, W. M., Koermer, G. S., Moini, A., Patchett, J. A., Xue, W. M., Burk, P., Dettling, J. C., and Caudle, M. T., "Copper CHA Zeolite Catalysts," U.S. Patent No. 0,226,545 (2008).
  56. Andersen, P. J., Collier, J. E., Casci, J. L., Chen, H.-Y., Fedeyko, J. M., Foo, R. K. S., and Rajaram, R. R., "SCR Method and System Using Cu/SAPO-34 Zeolite Catalyst," E.P. No. 2,150,328B1 (2008).
  57. Zones, S. I., "Zeolite SSZ-13 and its Method of Preparation," U.S. Patent No. 4,544,538 (1985).
  58. Wu, L., and Hensen, E. J. M., "Comparison of Mesoporous SSZ-13 and SAPO-34 Zeolite Catalysts for the Methanol-to-Olefins Reaction," Catal. Today, 235, 160-168 (2014). https://doi.org/10.1016/j.cattod.2014.02.057
  59. Ma, L., Cheng, Y., Cavataio, G., McCabe, R. W., Fu, L., and Li, J., "Characterization of Commercial Cu-SSZ-13 and Cu-SAPO-34 Catalysts with Hydrothermal Treatment for $NH_3$-SCR of NOx in Diesel Exhaust," Chem. Eng. J., 225, 323-330 (2013). https://doi.org/10.1016/j.cej.2013.03.078
  60. Deimund, M. A., Harrison, L., Lunn, J. D., Liu, Y., Malek, A., Shayib, R., and Davis, M. E., "Effect of Heteroatom Concentration in SSZ-13 on the Methanol-to-Olefins Reaction," ACS Catal., 6, 542-550 (2016). https://doi.org/10.1021/acscatal.5b01450
  61. Moliner, M., Franch, C., Palomares, E., Grill, M., and Corma, A., "Cu-SSZ-39, an Active and Hydrothermally Stable Catalyst for the Selective Catalytic Reduction of NOx," Chem. Commun., 48, 8264-8266 (2012). https://doi.org/10.1039/c2cc33992g
  62. Baik, J. H., Yim, S. D., Nam, I.-S., Mok, Y. S., Lee, J.-H., Cho, B. K., and Oh, S. H., "Control of NOx Emissions from Diesel Engine by Selective Catalytic Reduction (SCR) with Urea," Top. Catal., 30/31, 1-4 (2004). https://doi.org/10.1023/B:TOCA.0000030051.02987.a1
  63. Jo, D., Ryu, T., Park, G. T., Kim, P. S., Kim, C. H., Nam, I.-S., and Hong, S. B., "Synthesis of High-Silica LTA and UFI Zeolites and $NH_3$-SCR Performance of Their Copper-Exchanged Form," ACS Catal., 6, 2443-2447 (2016). https://doi.org/10.1021/acscatal.6b00489
  64. Kwak, J. H., Tran, D., Szanyi, J., Peden, C. H. F., and Lee, J. H., "The Effect of Copper Loading on the Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Cu-SSZ-13," Catal. Lett., 142, 295-301 (2012). https://doi.org/10.1007/s10562-012-0771-y
  65. Fickel, D. W., and Lobo, R. F., "Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD," J. Phys. Chem. C, 114, 1633-1640 (2010).
  66. Deka, U., Juhin, A., Eilertsen, E. A., Emerich, H., Green, M. A., Korhonen, S. T., Weckhuysen, B. M., and Beale, A. M., "Confirmation of Isolated $Cu^{2+}$ Ions in SSZ-13 Zeolite as Active Sites in $NH_3$-Selective Catalytic Reduction," J. Phys. Chem. C, 116, 4809-4818 (2012). https://doi.org/10.1021/jp212450d
  67. Gao, F., Kwak, J. H., Szanyi, J., and Peden, C. H. F., "Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts," Top. Catal., 56, 1441-1459 (2013). https://doi.org/10.1007/s11244-013-0145-8
  68. Moliner, M., Martínez, C., and Corma, A., "Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis," Chem. Mater., 26, 246-258 (2014). https://doi.org/10.1021/cm4015095
  69. Barrer, R. M., "Zeolites and Their Synthesis," Zeolites, 1, 130-140 (1981). https://doi.org/10.1016/S0144-2449(81)80001-2
  70. Zones, S. I., and Nordstrand, R. A., "Further Studies on the Conversion of Cubic P Zeolite to High Silica Organozeolites," Zeolites, 8, 409-415 (1988). https://doi.org/10.1016/S0144-2449(88)80179-9
  71. Lobo, R. F., "Synthesis and Rietveld Refinement of the Small-Pore Zeolite SSZ-16," Chem. Mater., 8, 2409-2411 (1996). https://doi.org/10.1021/cm960289c
  72. Lewis, G. J., Miller, M. A, Moscoso, J. G., Wilson, B. A., Knight, L. M., and Wilson, S. T., "Experimental Charge Density Matching Approach to Zeolite Synthesis," Stud. Surf. Sci. Catal., 154, 364-372 (2004). https://doi.org/10.1016/S0167-2991(04)80824-3
  73. Blackwell, C. S., Broach, R. W., Gatter, M. G., Holmgren, J. S., Jan, D. Y., Lewis, G. J., Mezza, B. J., Mezza, T. M., Miller, M. A., Moscoso, J. G., Patton, R. L., Rohde, L. M., Schoonover, M. W., Sinkler, W., Wilson, B. A., and Wilson, S. T., "Open-Framework Materials Synthesized in the $TMA^{+]/TEA^{+}$ Mixed-Template System: The New Low Si/Al Ratio Zeolites UZM-4 and UZM-5," Angew. Chem. Int. Ed., 42, 1737-1740 (2003). https://doi.org/10.1002/anie.200250076
  74. Miller, M. A., Moscoso, J. G., Koster, S., Gatter, M. G., and Lewis, G. J., "Synthesis and Characterization of the 12-Ring Zeolites UZM-4 (BPH) and UZM-22 (MEI) via the Charge Density Mismatch Approach in the Choline-$Li_2O-SrO-Al_2O_3-SiO_2$ System," Stud. Surf. Sci. Catal., 170, 347-354 (2007). https://doi.org/10.1016/S0167-2991(07)80859-7
  75. Kerr, G. T., "Chemistry of Crystalline Aluminosilicates. 11. The Synthesis and Properties of Zeolite ZK-4," Inorg. Chem., 5, 1537-1539 (1966). https://doi.org/10.1021/ic50043a015
  76. Chen, B. Xu, R., Zhang, R., and Liu, N., "Economical Way to Synthesize SSZ-13 with Abundant Ion-Exchanged $Cu^{+}$ for an Extraordinary Performance in Selective Catalytic Reduction (SCR) of NOx by Ammonia," Environ. Sci. Technol., 48, 13909-13916 (2014). https://doi.org/10.1021/es503707c
  77. Itakura, M., Goto, I., Takahashi, A., Fujitani, T., Ide, Y., Sadakane, M., and Sano, T., "Synthesis of High-Silica CHA Type Zeolite by Interzeolite Conversion of FAU Type Zeolite in the Presence of Seed Crystals," Micropor. Mesopor. Mater., 144, 91-96 (2011). https://doi.org/10.1016/j.micromeso.2011.03.041
  78. Zones, S. I., "Conversion of Faujasites to High-Silica Chabazite SSZ-13 in the Presence of N,N,N-Trimethyl-l-Adamantammonium Iodide," J. Chem. Soc. Faraday Trans., 87(22), 3709-3716 (1991). https://doi.org/10.1039/ft9918703709
  79. Zones, S. I., and Nordstrand, R. A., "Novel Zeolite Transformations: The Template-Mediated Conversion of Cubic P Zeolite to SSZ-13," Zeolites, 8, (1988).
  80. Ren, L., Zhu, L., Yang, C., Chen, Y., Sun, Q., Zhang, H., Li, C., Nawaz, F., Meng, X., and Xiao, F.-S., "Designed Copper-Amine Complex as an Efficient Template for One-Pot Synthesis of Cu-SSZ-13 Zeolite with Excellent Activity for Selective Catalytic Reduction of NOx by $NH_3$," Chem. Commun., 47, 9789-9791 (2011). https://doi.org/10.1039/c1cc12469b
  81. Xie, L., Liu, F., Ren, L., Shi, X., Xiao, F.-S., and He, H., "Excellent Performance of One-Pot Synthesized Cu-SSZ-13 Catalyst for the Selective Catalytic Reduction of NOx with $NH_3$," Environ. Sci. Technol., 48, 566-572 (2014). https://doi.org/10.1021/es4032002
  82. Wu, L., Degirmenci, V. D., Magusin, P. C. M. M,, Szyja B. M., and Hensen, E. J. M. "Dual Template Synthesis of a Highly Mesoporous SSZ-13 Zeolite with Improved Stability in the Methanol-to-Olefins Reaction," Chem. Commun., 48, 9492-9494 (2012). https://doi.org/10.1039/c2cc33994c

Cited by

  1. 세라믹 시트 필터에 부착된 V2O5-WO3/TiO2 촉매의 NO 환원 성능 vol.24, pp.1, 2016, https://doi.org/10.7464/ksct.2018.24.1.027
  2. 백금담지 알루미나 촉매와 오존 산화제 동시 적용에 의한 탄소 입자상 물질의 저온 산화반응 vol.56, pp.5, 2018, https://doi.org/10.9713/kcer.2018.56.5.752
  3. 냉간 시동 조건에서의 SCR 경유자동차의 NOx 전환 효율 vol.23, pp.4, 2016, https://doi.org/10.15435/jilasskr.2018.23.4.244