DOI QR코드

DOI QR Code

Convenient Method for Selective Isolation of Immuno-Stimulating Polysaccharides from Persimmon Leaves

감잎으로부터 면역 활성 다당의 선택 분리를 위한 간편 방법

  • Received : 2015.10.15
  • Accepted : 2015.11.27
  • Published : 2016.01.31

Abstract

The biological activity of polysaccharide is greatly influenced by polysaccharide structure and molecular distribution. Here, we developed a rapid and convenient isolation method for fractionating polysaccharides with different characteristics and optimized it using a polysaccharide mixture from Korean persimmon leaves. A crude polysaccharide mixture, persimmon leaves-enzyme (PLE) fraction, was isolated from persimmon leaves digested with pectinase and ethanol precipitation. The PLE fraction was further fractionated with a serially diluted ethanol solution (ethanol : deionized water=4:1, 2:1, 1.5:1, 1:1, and 0.5:1) to produce 10 subfractions (five precipitate fractions labeled from PLE-4 to PLE-0.5 and five supernatant fractions labeled from PLE-4S to PLE-0.5S). HPLC analysis indicated that PLE-4 and -2 consisted of diverse polysaccharides, whereas PLE-1.5, -1, and -0.5 contained high molecular weight (MW) polysaccharides. The fractions from PLE-4 to PLE-1 were mostly composed of 13 different characteristic sugars in rhamnogalacturonan (RG) I and II, and the sugars contained an arabino-${\beta}$-3,6-galactan moiety. However, PLE-0.5 did not contain RG-II or ${\beta}$-arabino-3,6-galactan. Treatment of macrophages with fractions PLE-1.5S and PLE-1S led to a $10{\mu}g/mL$ increase in interleukin (IL)-6 production, whereas treatment with PLE-4S and PLE-2S fractions composed of low MW polysaccharides resulted in reduced levels of IL-6. These results indicate that this isolation method may be useful for the rapid and convenient fractionation of bioactive RGs from polysaccharide mixtures with various properties.

다당이 갖는 각종 생물 활성은 그 구조의 특성 및 분자량 분포에 의해 달라지므로 특정 다당을 분리하기 위한 정제과정은 다당 연구에 있어 필수적으로 요청된다. 본 연구에서는 서로 다른 특성을 소유한 다당을 분획하기 위한 간편하고 신속한 분리법을 개발하기 위해 한국산 감잎으로부터 조제한 다당 혼합물을 이용, 본 분리법을 최적화하였다. 감잎은 pectinase 처리 후 에탄올 침전법을 통해 조다당 획분인 PLE로 조제되었으며, PLE는 재차 농도별로 연속 희석된 에탄올 용액(EtOH : DIW=4:1, 2:1, 1.5:1, 1:1 및 0.5:1)을 이용하여 총 10개 획분(5개 침전물 획분: PLE-4~PLE-0.5, 5개 상등액 획분: PLE-4S~PLE-0.5S)으로 분획하였다. HPLC 분석 결과 PLE-4, PLE-2 획분은 저분자와 고분자 획분이 혼합된 다당이, PLE-1.5~0.5 획분에는 고분자 다당이 주로 검출되었다. 또한 PLE-4~PLE-1 획분은 구성당 분석 결과 RG(rhamnogalacturonan)-I과 RG-II 다당의 지표 구성당인 총 13종의 서로 다른 당으로 구성되어 있음이 확인되었으며, ${\beta}$-arabino-3,6-galactan 잔기를 함유하고 있는 것으로 확인되었다. 하지만 PLE-0.5 획분에서는 RG-II 및 ${\beta}$-arabino-3,6-galactan 잔기를 함유하고 있지 않았다. 한편 PLE-1.5S~PLE-1S 획분을 처리한 마우스 복강 대식세포에서는 농도 의존적인 IL-6의 생산 증가가 관찰된 반면, 저분자 다당으로 구성된 PLE-4S 및 PLE-2S 획분에서는 활성이 매우 낮음이 확인되었다. 이상의 결과로부터 본 분리 방법이 다양한 특성을 갖는 다당의 혼합물로부터 생물 활성을 갖는 RG류를 신속하고 간편하게 분리하는 데 있어 유용한 방법임을 확인할 수 있었다.

Keywords

References

  1. Ridley BL, O'Neill MA, Mohnen D. 2001. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57: 929-967. https://doi.org/10.1016/S0031-9422(01)00113-3
  2. O'Neill M, Albersheim P, Darvill A. 1990. The pectic polysaccharides of primary cell walls. In Methods Plant Biochem. Dey PM, ed. Academic Press, London, UK. Vol 2, p 415-441.
  3. Engelsen SB, Cros S, Mackie W, Perez S. 1996. A molecular builder for carbohydrates: application to polysaccharides and complex carbohydrates. Biopolymers 39: 417-433. https://doi.org/10.1002/(SICI)1097-0282(199609)39:3<417::AID-BIP13>3.3.CO;2-R
  4. Ishii T, Matsunaga T. 2001. Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry 57: 969-974. https://doi.org/10.1016/S0031-9422(01)00047-4
  5. Perez S, Rodriguez-Carvajal MA, Doco T. 2003. A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie 85: 109-121. https://doi.org/10.1016/S0300-9084(03)00053-1
  6. Srivastava R, Kulshreshtha DK. 1989. Bioactive polysaccharides from plants. Phytochemistry 28: 2877-2883. https://doi.org/10.1016/0031-9422(89)80245-6
  7. Shin KS, Kiyohara H, Matsumoto T. 1998. Rhamnogalacturonan II dimers cross-linked by borate diesters from the leaves of Panax ginseng C.A. Meyer are responsible for expression of their IL-6 production enhancing activities. Carbohydr Res 307: 97-106. https://doi.org/10.1016/S0008-6215(98)00016-0
  8. Mueller EA, Anderer FA. 1990. Chemical specificity of effector cell/tumor cell bridging by a Viscum album rhamnogalacturonan enhancing cytotoxicity of human NK cells. Immunopharmacology 19: 69-77. https://doi.org/10.1016/0162-3109(90)90028-D
  9. Shin KS, Lee H. 1997. Structural analysis of the unusual sugar-containing oligosaccharides formed by the selective cleavage of weakly acidic polysaccharide. Korean J Food Sci Technol 29: 1105-1112.
  10. Mueller EA, Anderer FA. 1990. Synergistic action of a plant rhamnogalacturonan enhancing antitumor cytotoxicity of human natural killer and lymphokine-activated killer cells: chemical specificity of target cell recognition. Cancer Res 50: 3646-3651.
  11. McNeil M, Darvill AG, Albersheim P. 1980. Structure of plant cell walls: X. Rhamnogalacturonan I , a structurally complex pectic polysaccharide in the walls of suspensioncultured sycamore cells. Plant Physiol 66: 1128-1134. https://doi.org/10.1104/pp.66.6.1128
  12. Jung WY, Jeong JM. 2012. Change of antioxidative activity at different harvest time and improvement of atopic dermatitis effects for persimmon leaf extract. Kor J Herbology 27: 41-49. https://doi.org/10.6116/kjh.2012.27.1.41
  13. Jung UJ, Lee JS, Bok SH, Choi MS. 2011. Effects of extracts of persimmon leaf, buckwheat leaf, and Chinese matrimony vine leaf on body fat and lipid metabolism in rats. J Korean Soc Food Sci Nutr 40: 1215-1226. https://doi.org/10.3746/jkfn.2011.40.9.1215
  14. Kawakami K, Aketa S, Sakai H, Watanabe Y, Nishida H, Hirayama M. 2011. Antihypertensive and vasorelaxant effects of water-soluble proanthocyanidins from persimmon leaf tea in spontaneously hypertensive rats. Biosci Biotechnol Biochem 75: 1435-1439. https://doi.org/10.1271/bbb.100926
  15. Kim HJ, Kim MK. 2003. Anticancer effect of persimmon leaf extracts on Korean gastric cancer cell. Korean J Nutr 36: 133-146.
  16. Moon SH. 2002. Inhibitory effect of persimmon leaves on the mutagenicity in spore rec assay and on the growth of human cancer cells. Korean J Food & Nutr 15: 23-28.
  17. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. https://doi.org/10.1021/ac60111a017
  18. Blumenkrantz N, Asboe-Hansen G. 1973. New method for quantitative determination of uronic acids. Anal Biochem 54: 484-489. https://doi.org/10.1016/0003-2697(73)90377-1
  19. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  20. Karkhanis YD, Zeltner JY, Jackson JJ, Carlo DJ. 1978. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Anal Biochem 85: 595-601. https://doi.org/10.1016/0003-2697(78)90260-9
  21. Jones TM, Albersheim P. 1972. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharides. Plant Physiol 49: 926-936. https://doi.org/10.1104/pp.49.6.926
  22. van Holst GJ, Clarke AE. 1985. Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Anal Biochem 148: 446-450. https://doi.org/10.1016/0003-2697(85)90251-9
  23. McNeil M, Darvill AG, Aman P, Franzen LE, Albersheim P. 1982. Structural analysis of complex carbohydrates using high-performance liquid chromatography, gas chromatography, and mass spectrometry. In Methods in Enzymology. Ginsburg V, ed. Academic Press, New York, NY, USA. Vol 83, p 3-45.
  24. Yu KW, Kim YS, Shin KS, Kim JM, Suh HJ. 2005. Macrophage-stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus. Appl Biochem Biotechnol 126: 35-48. https://doi.org/10.1007/s12010-005-0004-6
  25. Yu KW, Hwang JH. 2001. Characterization of bone marrow cell proliferating arabinogalactan through Peyer's patch cells from rhizomes of Atractylodes lancea DC. J Food Sci Nutr 6: 180-186.
  26. van Holst GJ, Clarke AE. 1985. Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Anal Biochem 148: 446-450. https://doi.org/10.1016/0003-2697(85)90251-9
  27. Keller R, Keist R, Wechsler A, Leist TP, van der Meide PH. 1990. Mechanisms of macrophage-mediated tumor cell killing: a comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int J Cancer 46: 682-686. https://doi.org/10.1002/ijc.2910460422
  28. Nathan CF, Murray HW, Cohn ZA. 1980. The macrophage as an effector cell. N Engl J Med 303: 622-626. https://doi.org/10.1056/NEJM198009113031106
  29. Ohta Y, Lee JB, Hayashi K, Fujita A, Park DK, Hayashi T. 2007. In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J Agric Food Chem 55: 10194-10199. https://doi.org/10.1021/jf0721287
  30. Meyer RA. 2007. Immunology: from cell biology to disease. 1st ed. Wiley Publisher, Hoboken, NJ, USA. p 102-107.
  31. Shin YA, Park HR, Hong HD, Shin KS. 2012. Immuno-stimulating activities of polysaccharide fractions isolated from persimmon leaves. Korean J Food & Nutr 25: 941-950. https://doi.org/10.9799/ksfan.2012.25.4.941

Cited by

  1. 쥐눈이콩-노루궁뎅이버섯 균사체 발효물의 생리활성 vol.30, pp.6, 2016, https://doi.org/10.9799/ksfan.2017.30.6.1348