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Abstract
Type-II progressive censoring is one of the censoring methods frequently used in clinical studies, reliability

trials, quality control of products and industrial experiments. Sometimes in Type-II progressive censoring ex-
periments, the failure rate is low so the waiting time to observe the mth failure will be very long; however, the
experimenter may have to terminate the experiment before a predetermined time. In this article, if two general-
ized types of Type-II progressive censoring are reminded, we then make some changes in the removal method
of Type-II progressive censoring such that without reducing the deduction quality, the termination time of the
experiment decreases. This can be done with decreasing withdraws throughout the steps of the experiment with
a special reasonable method. A simulation study is done and the results are tabulated at the end of this article for
a comparison between introduced method and Type-II progressive censoring.

Keywords: Type-II stepwise progressive censoring, Type-II progressive censoring, maximum like-
lihood estimator, lifetime experiment, failure rate, test duration

Notation

F(·) cumulative distribution function;
f (·) probability density function;
ai (a1, . . . , ai);
Yi ith Type-II progressive censoring random variable;
yi observed value of Yi;
ti ith censoring time;
si prefixed number of the censoring items at the ith censoring stage;
Ri random variable of the number of the censoring items at the ith censoring stage;
ri observed value of Ri;
fYi,Ri (· , ·) joint probability density function of Yi and Ri;
gi(ri|y j) conditional probability density function of Ri given yi;
L(·) likelihood function;
E[·] expected value;
Exp(θ) exponential distribution and its parameter θ.

1. Introduction

Suppose that n independent units with identical cumulative distribution function (CDF; F(·)) and
probability density function (PDF; f (·)) are placed on a lifetime experiment. Moreover, assume that
at the first failure time (y1), s1 surviving experimental units are removed and at the second failure time
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Figure 1: Type-II progressive censoring.

(y2), s2 surviving units are withdrawn, and so on. Finally, at the mth failure time (ym), all remaining
surviving units (sm) are removed from the experiment; This censoring method is called “Type-II pro-
gressive censoring” and the observed values are y1, y2, . . . , ym. In this method, the number of observed
failures, m, and the censoring removal scheme s1, s2, . . . , sm are prefixed (Figure 1).

For more detail about Type-II progressive censoring readers can refer to Balakrishnan and Ag-
garwala (2000), Balakrishnan (2007), Balakrishnan and Cramer (2014), Balakrishnan et al. (2008,
2014), Burkschat (2008), Burkschat et al. (2006), Cohen (1963), Cramer (2014), Cramer and Kamps
(2001), Herd (1956). Some valuable results can also be found in Ghitany et al. (2013, 2014), Kang
and Seo (2011), Krishna and Kumar (2013), Pakyari and Balakrishnan (2013), Rezapour et al. (2013a,
2013b), Seo and Kang (2014). Cramer and Iliopoulos (2009) proposed an adaptive Type-II progres-
sive censoring such that the number of removals has been involved in previous failure times and the
number of previous censored items. Sarhan and Al-Ruzaizaa (2010), Dey and Dey (2014), and Tse et
al. (2000) use the Binomial distribution as the CDF of the number of the removal items. Moreover,
Ng et al. (2009) have generalized Type-II progressive censoring while making some modifications.

1.1. Ng et al.’s method

In Ng et al.’s method, similar to Type-II progressive censoring the censoring, removal scheme and a
threshold time such as T should be determined before the experiment. The experiment begins with
n independent and identically distributed units. At the first failure time (y1), s1 surviving units are
randomly selected and removed if y1 < T and otherwise no action is done. The experiment continues
with all remaining items. Similarly, at the jth failure time, 2 ≤ j ≤ m − 1, s j units of surviving
experimental units are removed from the experiment when y j < T , else the experiment is continued
without any removal. Finally, at the mth failure time, all remaining items are removed from the
experiment and the experiment is terminated. Let removals at jth stage be denoted by r j, j = 1, . . . ,m.
Therefore

R j =

{
s j, y j ≤ T,
0, other wise.

Figure 2 clarifies the method. In the figure, two main cases are shown (Ng et al., 2009).

1.2. Kinaci’s method

An extension of Type-II progressive censoring has been introduced by Bairamov and Parsi (2011).
The extension of Bairamov’s scheme has been given by Kinaci (2013). The Kinaci’s method can be
explained as follow.
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Figure 2: Ng et al.’s method.

Figure 3: Kinaci’s method.

In advance of the experiment, the experimenter should determine some parameters such as cen-
soring removal schemes, ri = (ri,1, . . . , ri,m−1), i = 1, . . . , k + 1 provided ri, j ≤ ri+1, j, i = 1, . . . , k
and j = 1, . . . ,m − 1 and also the vectors of time ti = (ti,1, . . . , ti,m−1), i = 1, . . . , k, give, t0, j = 0 and
tk+1, j = ∞, j = 1, . . . ,m−1. First, all of the items are placed simultaneously on the experiment, then at
the first failure time, R1 surviving items are immediately removed, where R1 = ri,1 if ti−1,1 < Y1 ≤ ti,1,
i = 1, . . . , k + 1. Briefly, at the jth failure time, j = 1, . . . ,m − 1 , R j surviving items are immediately
removed from the experiment, where R j = ri, j if ti−1, j < Y j ≤ ti, j. Finally, at the mth failure time all
remaining items are removed from the test and the experiment terminates (Figure 3).
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The introduced method by Bairamov and Parsi (2011) in a special case of Kinaci’s method, be-
cause in Kinaci’s method if k = 2 then the Kinaci’s method changes to Bairamov’s and Parsi’s (2011)
method.

The Kinaci’s scheme is very flexible, but has some disadvantages such that make it difficult to
use, for example, the experimenter has to determine [(2k + 1) ∗ (m − 1)] + 2 parameters, also, when
the failure rate is low this scheme removes a greater number of items and when the failure rate is not
low this scheme removes a less number of items from the test (and vice versa). When researchers
use the Type-II progressive censoring method, they may insist on using a special censoring removal
scheme because of benefits or limitations (such as time and cost); but in practice, researchers may
have some unexpected problems that make them unable to remove the prefixed number of items at the
failure time of the items. One of these problems is descending failure rate that makes the experimental
duration very long. Let the failure rate be descended, if the prefixed number of units is removed at
the failure times, then the failure rate will be further descended and the experimental duration would
be very long. One way to overcome this problem is decreasing the number of removals at each step
to restrain decreasing failure rate. Now the matter of interest is how many items should be removed
such that the researcher observes no decreasing in the failure rate. We need a censoring method that
is flexible and requires fewer parameters.

Motivated by this idea, in this study, we modify the Kinaci’s method; the modified method has
more flexibility and need’s fewer parameters, has reasonable manner when the failure rate is low
need’s fewer parameters. We call this method as “Type-II stepwise progressive censoring” in the next
sections. This topic is more explained in the next section.

2. Type-II stepwise progressive censoring

Suppose that n independent and identically distributed units are placed on a lifetime experiment.
Before the experiment, s = (s1, s2, . . . , sm−1) and t = (t1, t2, . . . , tm−1) should be determined, where t
is a vector of times and ti’s, i = 1, . . . ,m− 1 are ordered. When the experiment runs, at the first failure
(y1), R1 surviving units are removed from the experiment where R1 is a random variable such that if
t1 = 0 then R1 = 0 else is defined as:

R1 =



s1, t1 +
y1 − t1

t1
≤ t1,

s1 − 1, t1 < t1 +
y1 − t1

t1
≤ t1 +

2
s1(s1 + 1)

,

...

s1 − i, t1 +
i(i − 1)

s1(s1 + 1)
< t1 +

y1 − t1
t1

≤ t1 +
i(i + 1)

s1(s1 + 1)
,

...

0, t1 +
(s1 − 1)
(s1 + 1)

< t1 +
y1 − t1

t1
.

Then the experiment is continued with n − R1 − 1 remaining units. At the jth failure time y j,
2 ≤ j ≤ m − 1, R j surviving units are withdrawn from the experiment where if (t j − t j−1) > 0, then R j
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Figure 4: Type-II stepwise progressive censoring.

is a random variable satisfying

R j =



s j, t j +
y j − t j

t j − t j−1
≤ t j,

s j − 1, t j < t j +
y j − t j

t j − t j−1
≤ t j +

2
s j(s j + 1)

,

...

s j − i, t j +
i(i − 1)

s j(s j + 1)
< t j +

y j − t j

t j − t j−1
≤ t j +

i(i + 1)
s j(s j + 1)

,

...

0, t j +
(s j − 1)
(s j + 1)

< t j +
y j − t j

t j − t j−1

and if (t j − t j−1) = 0 then

R j =

{
s j, y j ≤ t j,
0, t j < y j.

Finally, at the mth failure time, ym, all remaining items, Rm, are removed and the experiment is termi-
nated. We call this method as “Type-II stepwise progressive censoring”.

Let P j = t j + (Y j − t j)/{(t j − t j−1)I(0,∞)(t j − t j−1) + I{0}(t j − t j−1)} and h j,i = t j + i(i + 1)/{s j(s j +

1)}I(0,∞)(t j − t j−1), for j = 1, . . . ,m − 1 and i = 0, 1, . . . , s j − 1 where t0 = 0 also I{b}(a) = 1 if a ∈ b
and I{b}(a) = 0, otherwise. By using P j and h j,i notations the definition of R j, for j = 1, . . . ,m − 1 and
i = 0, 1, . . . , s j − 1 is:

R j =



s j, −∞ < P j ≤ h j,0,
s j − 1, h j,0 < P j ≤ h j,1,
...
s j − i, h j,i−1 < P j ≤ h j,i,
...
0, h j,s j−1 < P j ≤ ∞.

(2.1)

Figure 4 shows the algorithm of the Type-II stepwise progressive censoring at the jth step, 1 ≤ j ≤
m − 1.
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Figure 5: Type-II stepwise progressive censoring for Example 1.

Example 1. Suppose that an experimenter wants to do a lifetime experiment by using the Type-II
stepwise progressive censoring method. Moreover, suppose that n = 15,m = 4, s4 = (3, 3, 4, 1) and
t3 = (1.25, 2.5, 3). Then, the Figure 5 depicts the number of removals at the all three steps (Example
1). Let y4 = (1.1, 2.75, 3.1, 4), then p3 = (1.13, 2.7, 3.2) so, r4 = (3, 1, 2, 5).

Henceforth, “Type-II progressive censoring” and “Type-II stepwise progressive censoring” phrases
are abbreviated by T2PC and T2SPC, respectively.

3. The likelihood function of T2SPC and its MLE

The conditional density function of R j, 1 ≤ j ≤ m − 1 can be obtained by:

g j(r j|y j) =
s j∑

i=0

I(s j−i)(r j)I(h j,i−1,h j,i](p j),

and

gm(rm|ym) = In−∑m−1
j=1 (r j+1)(rm),

where h j,−1 = −∞ and h j,s j = +∞. However, from Cramer and Iliopoulos (2009), the likelihood
function of T2PC is

fYm,Rm

(
ym, rm

)
=

m∏
j=1

f
(
y j|y j−1, r j−1

)
×

m∏
j=1

g j

(
r j|y j

)
. (3.1)



Type-II stepwise progressive censoring 63

Hence, the likelihood function of T2SPC is:

fYm,Rm

(
ym, rm

)
= C

m∏
j=1

f
(
y j

) [
1 − F

(
y j

)]r j×
m−1∏
j=1

s j−1∑
i=1

I(s j−i)
(
r j

)
I(h j,i−1,h j,i]

(
p j

)
× In−∑m−1

j=1 (r j+1)(rm), (3.2)

where C is a normalizing constant satisfying∫ ∞

0

∫ ∞

y1

· · ·
∫ ∞

ym−1

fYm,Rm (ym, rm) = 1.

By use of Equation (3.1) the joint likelihood function of Y = (Y1, . . . , Ym) and R = (R1, . . . ,Rm) can
be written as

L(y, r; θ) = L1 (y; θ|r) × L2 (r|y) , (3.3)

where

L1(y; θ|r) =
m∏

j=1

f
(
y j|y j−1, r j−1

)
and

L2(r|y) =
m∏

j=1

g j

(
r j|y j

)
.

Since L2(r|y) does not involve in the parameter θ, the maximum likelihood estimators (MLE) of θ
can be obtained by maximizing L1(y; θ|r) directly. So, the MLE of the parameter in T2SPC is similar
to T2PC.

4. Marginal distributions

Let (Y, R) denote the T2SPC data from an absolutely continuous population with CDF F(·) and PDF
f (·). This is obviously the marginal distribution of the first T2SPC order statistic is

fY1 (y) = n f (y)[1 − F(y)]n−1. (4.1)

It can be shown that the joint distribution T2SPC order statistics given R = r is similar to the ordinary
progressively Type II censored order statistics with censoring removal scheme r. Due to the Marko-
vian property of ordinary progressive Type II censored order statistics the marginal distribution of ith

of T2SPC does not depend on (ri, . . . , rm). The marginal distribution of ith ordinary progressive Type
II censored order statistics, Yi, i = 2, 3, . . . ,m is

fYi (yi|ri−1) = Ci−1 f (y)
m∑

k=1

ak,i[1 − F(y)]γk−1, (4.2)

where Ci−1 =
∏i

j=1 γ j, ak,i =
∏i

j=k, j,k(1/(γ j − γk)), 1 ≤ k ≤ i ≤ m, m ≥ 2, γ j = n − ∑ j−1
i=1 (ri + 1),

γ1 = n, n = m +
∑m

j=1 r j. For more details, see Kamps and Cramer (2001) .
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So, the PDF of ith T2SPC order statistic can be obtained by

fYi (yi) =
s1∑

r1=0

· · ·
si−1∑

ri−1=0

fYi (yi|ri−1)P(Ri−1 = ri−1), (4.3)

where

P(Ri = ri) =
i∏

j=1

g j(r j|y j). (4.4)

See Dey and Dey (2014), Sarhan and Al-Ruzaizaa (2010) and Tse et al. (2000).
We have

g j

(
r j|y j

)
= I{s j−i}

(
r j

)
P

(
h j,i−1 < P j ≤ h j,i

)
I(0,+∞)

(
t j − t j−1

)
+

[
P

(
−∞ < y j ≤ t j

)
Is j

(
r j

)
+ P

(
t j < y j ≤ +∞

)
I0

(
r j

)]
I{0}

(
t j − t j−1

)
= P

t j +
(
t j − t j−1

) i(i − 1)

s j

(
s j + 1

) < y j ≤ t j +
(
t j − t j−1

) i(i + 1)

s j

(
s j + 1

)  I(0,+∞)

(
t j − t j−1

)
+

[
P

(
−∞ < y j ≤ t j

)
Is j

(
r j

)
+ P

(
t j < y j ≤ +∞

)
I0

(
r j

)]
I{0}

(
t j − t j−1

)
, (4.5)

So

P
(
R j = r j|R j−1 = r j−1

)
= P

(
b j,i−1 < y j ≤ b j,i

)
, (4.6)

where b j,i = t j + (t j − t j−1){i(i + 1)}/{s j(s j + 1)}, i = 0, . . . , s j − 1, b j,−1 = −∞ and b j,s j = +∞.

5. The test duration

It is often useful to have some information about the test duration time due to the direct relation
between the test duration time and cost in practical applications. In ordinary Type II progressive
censoring the test termination time is the mth failure time, so the expected test duration time is equal to
the expected mth failure time. The expected test termination time for the ordinary Type II progressive
censoring with r = (r1, . . . , rm−1) is introduced by Balakrishnan and Aggarwala (2000) and is also
formulated as

E[Ym|R = r] = C(r)
r1∑

l1=0

· · ·
rm∑

lm=0

(−1)A

(
r1
l1

)
· · ·

(
lm
rm

)∏m
i=1 h(li)

∫ ∞

0
y f (y)Fh(li)−1(y)dy, (5.1)

where A =
∑m

i=1 li, C(r) =
∏m−1

i=0 (n−∑i
j=1(r j + 1)), h(li) =

∑i
j=1(l j + 1) and i is the number of failures.

For more details, readers can refer to Balakrishnan and Aggarwala (2000), Tse et al. (2000), Sarhan
and Al-Ruzaizaa (2010).

Another representation of the expected test duration is also proposed by Kamps and Cramer
(2001). This representation is

E[Ym|R = r] = Ci−1

∫ ∞

0
y f (y)

m∑
k=1

ak,i[1 − F(y)]γk−1dy. (5.2)
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Table 1: Data from T2SPC

i 1 2 3 4 5 6
Yi 0.1788 0.2892 0.4560 0.5184 0.8412 0.9864
Ri 3 3 3 3 1 4

Equation (5.2) is obtained directly from Equation (4.2) (Kamps and Cramer, 2001; Bairamov and
Parsi, 2011). Due to the simplicity of Equation (5.2), we use the formula to compute the test termi-
nation time of T2SPC. In T2SPC, due to random removals, the expected test duration time is defined
by

E[Ym] = ER[E[Ym|R]].

For T2SPC we have

E[Ym] =
s1∑

r1=0

· · ·
sm−1∑

rm−1=0

P(R = r)ER[E[Ym|R = r]], (5.3)

=

s1∑
r1=0

· · ·
sm−1∑

rm−1=0

P(R = r)Ci−1

∫ ∞

0
y f (y)

m∑
k=1

ak,i[1 − F(y)]γk−1dy. (5.4)

This can be noted that for i = 1, . . . ,m − 1

E[Ri|ri−1] =
si∑

j=0

jP(Ri = j|ri−1). (5.5)

6. Real data

Here there are 23 deep-groove ball bearing failure times. Who first used the data set is Lieblein and
Zelen (1956), but some other authors used and discussed about this failure data set. These failure
times are

0.1788 0.2892 0.3300 0.4152 0.4212 0.4560 0.4848 0.5184 0.5196 0.5412
0.5556 0.6780 0.6864 0.6864 0.6888 0.8412 0.9312 0.9864 1.0512 1.0584
1.2792 1.2804 1.7340.

Raqab (2002) shows that the Rayleigh distribution provides a justifiable fit to the ball bearing
complete data. Dey and Dey (2014) used this data set to generate progressively Type II censored data
using binomial removals. They performed a goodness-of-fit test with a Kolmogorov-Smirnov test and
chi square test. They had shown that the Rayleigh distribution has a reasonable fit to the progressively
Type II censored ball bearing data. More details about the data set is explained by Caroni (2002). Here
we use this data set to generate stepwise progressively Type II censored data. We consider m = 6,
t = (0.2, 0.3, 0.5, 0.6, 0.8) and the censoring scheme r = (3, 3, 3, 3, 3, 2). The observed failure times
are given by Table 1.

Thus, the experiment is continued until 0.9864 and four units are withdrawn at the final censoring
step. The total number of progressively censored units is 17. The effectively applied removal censor-
ing scheme is r = (3, 3, 3, 3, 1, 4). The lifetimes belonging to the Table 2 are stepwise progressively
Type II censored:

Figure 6 depicts the generation procedure of stepwise progressively Type-II censored order statis-
tics.
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Table 2: Stepwise progressively Type II censored data

Censoring time Censored data
0.1788 0.4152, 0.6864, 0.9312
0.2892 0.3300, 0.4212, 0.5556
0.4560 0.4848, 0.6864, 1.734
0.5184 0.5196, 0.5412, 0.6780
0.8412 0.9312
0.9864 1.0512, 1.0584, 1.2792, 1.2804

Figure 6: Generation process of a progressively stepwise Type-II censored data set from 23 deep-groove ball
bearing failure times (filled circle denotes an observed failure time and open crossed circle denotes a censored

value).

7. Submodels of T2SPC

In this section, we introduce and discuss about some special cases of T2SPC.

7.1. T2PC

First, define∞ −∞ = 0. If ti = ∞, i = 1, 2, . . . ,m − 1, in the time vector (t), then the T2SPC method
is similar to the T2PC method, because in this case

R j = s j, j = 1, 2, . . . ,m − 1,



Type-II stepwise progressive censoring 67

Table 3: The diversity of T2SPC and T2PC. in a same experiment

Censoring Type Censoring removal scheme Data E(Xm) Estimate
T2PC 5, 5, 5, 5, 5 0.13, 1.26, 1.92, 2.38, 3.59 3.59 0.0898

T2SPC 5, 1, 0, 5, 14 0.13, 0.62, 1.92, 2.12, 2.70 2.70 0.0875

and Equation (3.2) changes to (7.1).
Also, in this case

fYm,Rm (ym, rm) = C
m∏

j=1

f (y j)[1 − F(y j)]r j × I(s1,s2,...,sm)(r1, r2, . . . , rm). (7.1)

Equation (7.1) is similar to the likelihood function of T2PC by using the censoring removal scheme s.

7.2. Ng et al.’s generalized T2PC

In the T2SPC method, if all the ti’s, i = 1, 2, . . . ,m − 1 in the time vector is equal to same constant
time, namely T then, the T2SPC method is changed to the Ng et al.’s method and in this case the
Equation (3.2) is changed to Equation (7.2).

fYm,Rm (ym, rm) = C
m∏

j=1

f (y j)[1 − F(y j)]r j × I(s1,s2,...,sJ ,0,...,0,
∑m

j=J+1 s j)(r1, r2, . . . , rm), (7.2)

where J is the number of failures that observed before T.

8. Simulation study for comparison with T2PC

For illustration the influence of T2SPC against T2PC, first the diversity of these two censors is shown
by simulation. In this simulation, the distribution of the simulated data is supposed to be exponential
distribution Exp(θ), θ = 0.1 for m = 5, n = 30, t = (0.15, 0.2, 1.2, 2.4) and s = (5, 5, 5, 5, 5) as
censoring removal scheme (Table 3).

Here, some comparisons between T2SPC and T2PC by means of simulation are done. The soft-
ware that is used for the simulation study is R software; with the Monte Carlo method for 10000 times
repeats. The simulated data are exponentially distributed Exp(θ), θ = 0.1. The experiment is simu-
lated for T2SPC and T2PC, respectively. For each case, the empirical maximum likelihood estimator
(MLE), the empirical mean of square error (MSE) and the empirical test duration are obtained and are
tabulated in Table 4, where

1. θ̂1 is the empirical MLE by use of T2PC.

2. θ̂2 is the empirical MLE by use of T2SPC.

3. MSE1 is the empirical MSE by use of T2PC.

4. MSE2 is the empirical MSE by use of T2SPC.

5. E(Xm)1 is the empirical test duration by use of T2PC.

6. E(Xm)2 is the empirical test duration by use of T2SPC.

From Tables 4, it is easy to see that E(Xm)2 ≤ E(Xm)1 and MSE2 is equal to MSE1, approximately.
From Table 4, for example, for X having the exponential distribution with parameter θ = 0.1 and
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Table 4: Simulations of T2SPC and T2PC

n m r t
20 5 3, . . . , 3 0.33, 0.78, 1.45, 2.45
20 10 1, . . . , 1 0.35, 0.77, 1.29, 1.84, 2.5, 3.24, 4.00, 5.64, 7.4
30 5 5, . . . , 5 0.28, 0.59, 0.97, 1.59
30 10 2, . . . , 2 0.24, 0.51, 0.88, 1.26, 1.63, 2.01, 2.75, 3.64, 4.85
50 5 9, . . . , 9 0.17, 0.35, 0.58, 0.94
50 10 4, . . . , 4 0.14, 0.31, 0.51, 0.72, 0.95, 1.22, 1.56, 2.11, 2.70
50 15 10, 10, 10, 0, . . . , 0, 3, 2 0.15, 0.31, 0.58, 0, . . . , 0, 6.87
70 10 20, 10, 10, 10, 0, . . . , 0, 5, 5 0.1, 0.24, 0.47, 0.77, 0, . . . , 0, 3.52
70 20 10, 10, 10, 10, 0, . . . , 0, 5, 5 0.11, 0.26, 0.44, 0.73, 0, . . . , 0, 4
70 30 8, 8, 8, 8, 0, . . . , 0, 4, 4 0.12, 0.23, 0.37, 0.54, 0, . . . , 0, 10.64

100 20 16, 16, 16, 16, 0, . . . , 0, 8, 8 0.067, 0.17, 0.29, 0.45, 0, . . . , 0, 5.26
100 30 14, 14, 14, 14, 0, . . . , 0, 7, 7 0.07, 0.15, 0.26, 0.41, 0, . . . , 0, 7.6
100 50 10, 10, 10, 10, 0, . . . , 0, 5, 5 0.07, 0.15, 0.25, 0.35, 0, . . . , 0, 12.65

n m θ̂1 θ̂2 MSE1 MSE2 E(Xm)1 E(Xm)2
20 5 0.1244 0.1243 0.0052 0.0051 5.7376 4.4948
20 10 0.1111 0.1108 0.0015 0.0015 14.5831 11.5472
30 5 0.1252 0.1250 0.0056 0.0051 3.8178 2.9600
30 10 0.1112 0.1112 0.0016 0.0015 9.7833 7.4881
50 5 0.1252 0.1252 0.0052 0.0052 2.2939 1.7631
50 10 0.1109 0.1107 0.0015 0.0015 5.8841 4.2952
50 15 0.1075 0.1068 0.0008 0.0008 13.9733 12.5116
70 10 0.1108 0.1104 0.0014 0.0014 5.4889 5.2154
70 20 0.1070 0.1064 0.0007 0.0006 10.7499 10.5180
70 30 0.1037 0.1033 0.0003 0.0003 15.6449 14.9490

100 20 0.1054 0.1053 0.0006 0.0005 7.8518 7.4344
100 30 0.1039 0.1036 0.0003 0.0003 11.3327 10.8657
100 50 0.1019 0.1018 0.0002 0.0002 18.0847 17.5411

n = 20, m = 5, if we choose the censoring removal scheme as r = (3, 3, 3, 3) and the vector of
times as t = (0.33, 0.78, 1.45, 2.45), then the empirical MLE, the empirical MSE and the empirical
test duration for T2PC will be 0.1244, 0.0052 and 5.7376, respectively. In the case of the T2SPC
method the empirical MLE, the empirical MSE and the empirical test duration will be 0.1243, 0.0051
and 4.4948, respectively. Thus, the T2SPC method decreases the test duration without reducing the
deduction quality. These results provide important advantages to life test experimenters.

9. Conclusions

In this paper, a new flexible generalized Type II progressive censoring was introduced and was named
by “Type-II stepwise progressive censoring”. Table 3 indicates the results of a comparison by use of
simulation. Table 3 also shows the estimation of the parameter using the T2SPC method was as well as
the estimation of parameter using T2PC. Moreover, the failure rate increases because the termination
time of the experiment decreases by use of the new method. Whenever an experimenter wants to
use the T2PC method, the T2SPC method appears a more flexible and accurate method because if
the failure rate is not low practically the censoring removal scheme that is used in the experiment is
similar to the censoring removal scheme in T2PC but if the failure rate is low, this censoring method
removes some less than the predetermined censoring removal scheme. We can say the introduced
method can control the test duration. Moreover the number of the required parameters in T2SPC and
Kinaci’s method is 2m − 1 and [(2k + 1)(m − 1)] + 2, respectively. Furthermore, in Kinaci’s method
by use of k various censoring removal schemes the number of possible resulting censoring removal



Type-II stepwise progressive censoring 69

scheme is km ,whereas in the new introduced method by use of one censoring removal scheme the
number of possible censoring removal scheme is equal to

∏m
i=1[(si + 1)!]. Using the T2SPC instead

T2PC method is therefore completely justifiable and reasonable.
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