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GENERALIZATION OF THE FEJÉR–HADAMARD’S

INEQUALITY FOR CONVEX FUNCTION ON

COORDINATES

Ghulam Farid and Atiq Ur Rehman

Abstract. In this paper, we give generalization of the Fejér–Hadamard
inequality by using definition of convex functions on n-coordinates. Re-
sults given in [8, 12] are particular cases of results given here.

1. Introduction

Convex functions are important and provide a base to build literature of
mathematical inequalities. A function f : I → R, where I is an interval in R is
called convex if

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y),

where λ ∈ [0, 1], x, y ∈ I.

A bundle of inequalities in literature, are due to convex functions or functions
related to convex functions see [4, 9, 15]. A classical inequality for convex
functions is Hadamard inequality, this is given as follows:

(1) f

(

a+ b

2

)

≤
1

b− a

∫ b

a

f(t) dt ≤
f(a) + f(b)

2
,

where f : I → R is a convex function a, b ∈ I, a < b (see [17, p. 137]).
In many areas of analysis, application of the Hadamard inequality appear

for different classes of functions (see [1, 3, 6, 10, 18] for convex functions). Some
useful mappings connected to this inequality are also defined by many authors,
for example, see [2, 5, 10, 14]. In recent years, the concept of convexity has
been extended and generalized in various directions. In this regards, very novel
and innovative techniques are used by different authors (see, [11, 16]).
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In 1906, Fejér (see [13] and [17, p. 138]) established the following weighted
generalization of the Hadamard inequality. The inequalities

(2) f

(

a+ b

2

)
∫ b

a

g(x)dx ≤

∫ b

a

f(x)g(x)dx ≤
f(a) + f(b)

2

∫ b

a

g(x)dx

hold for every convex function f : I → R, a, b ∈ I, and g : [a, b] → R+ is
symmetric about (a+ b)/2.

In [8] S. S. Dragomir gave Hadamard inequality for rectangle in plane by
defining convex functions on coordinates.

Definition 1.1. Let ∆2 := [a, b] × [c, d] ⊂ R2 with a < b and c < d. A
function f : ∆2 → R will be called convex on coordinates if the partial mapping
fy : [a, b] → R, fy(u) := f(u, y) and fx : [c, d] → R, fx(v) := f(x, v) are convex,
where defined for all y ∈ [c, d] and x ∈ [a, b].

Theorem 1.2. Let f : ∆2 → R be a convex mapping on coordinates in ∆2.

Also let g1 : [a, b] → R+ and g2 : [c, d] → R+ be two integrable and symmetric

functions about (a+b)/2 and (c+d)/2 respectively. Then one has the following

inequalities

(3)

f

(

a+ b

2
,
c+ d

2

)

≤
1

2

[

1

G1

∫ b

a

f

(

x,
c+ d

2

)

g1(x)dx +
1

G2

∫ d

c

f

(

a+ b

2
, y

)

g2(y)dy

]

≤
1

G1G2

∫ b

a

∫ d

c

f(x, y)g1(x)g2(y)dydx

≤
1

4

[

1

G1

∫ b

a

g1(x)f(x, c)dx +
1

G1

∫ b

a

g1(x)f(x, d)dx

+
1

G2

∫ d

c

g2(y)f(a, y)dy +
1

G2

∫ d

c

g2(y)f(b, y)dy

]

≤
1

4
[f(a, c) + f(a, d) + f(b, c) + f(b, d)] ,

where

G1 =

∫ b

a

g1(x)dx and G2 =

∫ d

c

g2(y)dy.

There in [12] some mappings connected to above inequality are also consid-
ered and their properties are discussed.

In [12] authors extended the definition of convex functions on coordinates
to n-coordinates and gave the Hadamard’s inequality for n-coordinates and
related results. In this paper we give Fejér–Hadamard’s inequality for convex
functions on coordinates and show that results proved in [8, 12] are particular
case of results in this paper.
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2. Main results

For n ≥ 2, let ai, bi (i = 1, 2, . . . , n) be real numbers such that ai < bi
for i = 1, 2, . . . , n. We consider an n-dimensional interval ∆n defined as ∆n =
∏n

i=1[ai, bi]. In [12] the definition of a convex function on n-coordinates is given
as follows:

Definition 2.1. Let (x1, . . . , xn) ∈ ∆n. A mapping f : ∆n → R is called
convex on n-coordinates if the functions f i

xn

, where f i
xn

(t) := f(x1, . . . , xi−1, t,
xi+1, . . . , xn), are convex on [ai, bi] for i = 1, 2, . . . , n.

Recall that a mapping f : ∆n → R is convex in ∆n if for x = (x1, . . . , xn),
y = (y1, y2, . . . , yn) ∈ ∆n and α ∈ [0, 1], the following inequality holds:

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y).

It can be seen that every convex mapping f : ∆n → R is convex on the n-
coordinates but converse is not true.

Let f : ∆n → R be convex in ∆n. Consider f i
xn

: [ai, bi] → R, defined by

f i
xn

(t) = f(x1, . . . , xi−1, t, xi+1, . . . , xn), t ∈ [ai, bi].

Now for x, y ∈ [ai, bi] and α ∈ [0, 1],

f i
xn

(αx + (1− α)y)

= f(x1, . . . , xi−1, αx+ (1− α)y, xi+1, . . . , xn)

= f(αx1 + (1− α)x1, . . . , αx + (1− α)y, . . . , αxn + (1− α)xn)

≤ αf(x1, . . . , xi−1, x, xi+1, . . . , xn) + (1 − α)f(x1, . . . , xi−1, y, xi+1, . . . , xn)

= αf i
xn

(x) + (1− α)f i
xn

(y),

which implies f i
xn

is convex on [ai, bi], that is, f is convex on n-coordinates.
For converse we give the following counter example:

Example 2.2. Let us consider a mapping f : [0, 1]n → R defined as

f(x1, . . . , xn) = x1 · x2 · · ·xn.

It is convex on n-coordinates as follows:

f i
xn

(αx + (1− α)y)

= x1 · · ·xi−1 · (αx + (1− α)y) · xi+1 · · ·xn

= α(x1 · · ·xi−1 · x · xi+1 · · ·xn) + (1− α)(x1 · · ·xi−1 · y · xi+1 · · ·xn)

= αf i
xn

(x) + (1− α)f i
xn

(y).

But for x = (1, 1, . . . , 1, 0),y = (0, 1, 1, . . . , 1) ∈ [0, 1]n, we have

f(αx+ (1 − α)y) = f(α, 1, 1, . . . , 1− α)

= α(1 − α)

and
αf(x) + (1− α)f(y) = α · 0 + (1− α) · 0 = 0.
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This gives

f(αx+ (1− α)y) > αf(x) + (1− α)f(y) for all α ∈ (0, 1),

that is, f is not convex on [0, 1]n.

It is interesting to note that if f : ∆n → R is a convex mapping on n-
coordinates, then f i

xn

: [ai, bi] → R is a convex function on [ai, bi] for each

i = 1, 2, . . . , n. Also if gi : [ai, bi] → R is a symmetric function about ai+bi
2 ,

then from Fejér–Hadamard’s inequality, we have

f i
xn

(

ai + bi

2

)

≤
1

Gi

∫ bi

ai

f i
xn

(xi)g(xi)dxi, i = 1, 2, . . . , n,

where

Gi =

∫ bi

ai

gi(xi)dxi.

This gives us

(4)

n
∑

k=1

fk
xn

(

ak + bk

2

)

≤

n
∑

k=1

1

Gk

∫ bk

ak

fk
xn

(xk)gk(xk)dxk.

Theorem 2.3. Let (x1, . . . , xn) ∈ ∆n and f : ∆n → R be a convex mapping

on n-coordinates. Also, let gi : [ai, bi] → R be an integrable and symmetric

function about ai+bi
2 for each i = 1, . . . , n. Then we have

n
∑

k=1

1

Gk

∫ bk

ak

fk+1
xn

(

ak+1 + bk+1

2

)

gk(xk)dxk

≤
n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f(x)gk(xk)gk+1(xk+1)dxk+1dxk(5)

≤
1

2

n
∑

k=1

[

1

Gk

∫ bk

ak

(

fk+1
xn

(ak+1) + fk+1
xn

(ak+1)
)

gk(xk)dxk

]

,

where

Gk =

∫ bk

ak

gk(xk)dxk,

and with n+ 1 7→ 1. These inequalities are sharp.

Proof. By applying the Fejér–Hadamard’s inequality for convex function fk+1
xn

on interval [ak+1, bk+1] we have

fk+1
xn

(

ak+1 + bk+1

2

)

Gk+1 ≤

∫ bk+1

ak+1

fk+1
xn

(xk+1)gk+1(xk+1)dxk+1(6)

≤

(

fk+1
xn

(ak+1) + fk+1
xn

(bk+1)

2

)

Gk+1.
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Multiplying (6) by gk(xk) we have

fk+1
xn

(

ak+1 + bk+1

2

)

gk(xk)Gk+1 ≤

∫ bk+1

ak+1

fk+1
xn

(xk+1)gk(xk)gk+1(xk+1)dxk+1

≤

(

fk+1
xn

(ak+1) + fk+1
xn

(bk+1)

2

)

gk(xk)Gk+1.

Now by integrating on [ak, bk] we get

Gk+1

∫ bk

ak

fk+1
xn

(

ak+1 + bk+1

2

)

gk(xk)dxk

≤

∫ bk

ak

∫ bk+1

ak+1

fk+1
xn

(xk+1)gk(xk)gk+1(xk+1)dxk+1dxk

≤ Gk+1

∫ bk+1

ak+1

(

fk+1
xn

(ak+1) + fk+1
xn

(bk+1)

2

)

gk(xk)dxk.

As Gk > 0, Gk+1 > 0, then divide by GkGk+1 we get

1

Gk

∫ bk

ak

fk+1
xn

(

ak+1 + bk+1

2

)

gk(xk)dxk

≤
1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

fk+1
xn

(xk+1)gk(xk)gk+1(xk+1)dxk+1dxk

≤
1

Gk

∫ bk+1

ak+1

(

fk+1
xn

(ak+1) + fk+1
xn

(bk+1)

2

)

gk(xk)dxk.

Taking summation from 1 to n we get (5).
If we consider f(x1, . . . , xn) = x1 · · ·xn, then inequalities in (5) become

equality, which shows these are sharp. �

Theorem 2.4. Let (x1, . . . , xn) ∈ ∆n and f : ∆n → R be a convex mapping

on n-coordinates. Also, let gi : [ai, bi] → R be an integrable and symmetric

function about ai+bi
2 for each i = 1, . . . , n. Then we have

n
∑

k=1

1

Gk

∫ bk

ak

(

fk
an

(xk) + fk
bn
(xk)

)

dxk(7)

≤
n

2
(f(a) + f(b)) +

1

2

n
∑

k=1

(

fk
an

(bk) + fk
bn
(ak)

)

,

where a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn). The above inequality is

sharp.

Proof. As f : ∆n → R is a convex mapping on n-coordinates, therefore f i
xn

:
[ai, bi] → R is convex on [ai, bi] for each i = 1, 2, 3, . . . , n. From Fejér inequality
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for each i = 1, 2, 3, . . . , n we have,

(8)
1

Gi

∫ bi

ai

f i
an

(xi)dxigi(xi) ≤
f(a) + f i

an

(bi)

2

and

(9)
1

Gi

∫ bi

ai

f i
bn
(xi)dxigi(xi) ≤

f i
bn
(ai) + f(b)

2
.

Adding (8) and (9) we get,

1

Gi

∫ bi

ai

(

f i
an

(xi) + f i
bn
(xi)

)

gi(xi)dxi(10)

≤
1

2
(f(a) + f(b)) +

1

2

(

f i
an

(bi) + f i
bn
(ai)

)

,

where i = 1, 2, . . . , n. Taking sum from 1 to n we get (7).
If we consider f(x1, . . . , xn) = x1 · · ·xn, then inequalities in (7) become

equality, which shows these are sharp. �

A special case of inequalities (4), (5), and (7) is stated in the following,
which is main result of [12, Theorem 1].

Corollary 2.5. Let ∆2 = [a, b]× [c, d] and f : ∆2 → R be a convex mapping

on 2-coordinates. Also, let gi : [ai, bi] → R be an integrable and symmetric

function about ai+bi
2 for each i = 1, 2. Then (3) is valid.

Proof. By putting n = 2 in Theorem 2.3 and Theorem 2.4, and taking a1 = a,
b1 = b, a2 = c, and b2 = d, we get the required result. �

Remark 2.6. Further if we put g1(x) = 1 and g2(x) = 1, then we get main
result of [8, Theorem 1].

3. Associated mappings

In this section we are interested to associate some mappings with the gen-
eralized Fejér–Hadamard inequality for a convex mapping on n-coordinates.

For n ≥ 2, let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) and Ai denotes
arithmetic means of numbers ai and bi, that is,

Ai = A(ai, bi) =
ai + bi

2
.

Also for x = (x1, x2, . . . , xn) ∈ ∆n :=
∏n

i=1[ai, bi] and t = (t1, t2, . . . , tn) ∈
[0, 1]n, we consider si be a point on a segment between xi and Ai, that is,

si = tixi + (1− ti)Ai.
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For the mapping f : ∆n → R defined in previous section, we can associate a

mapping ̂H : [0; 1]n → R given by

̂H(t) =

n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f(s)gk(xk)gk+1(xk+1)dxk+1dxk,

where s = (s1, s2, . . . , sn).

Consider ̂Hi
tn

: [0, 1] → R, defined by

̂Hi
tn
(t) = ̂H(t1, . . . , ti−1, t, ti+1, . . . , tn).

We can rewrite ̂Hi
tn
(t) as follows:

̂Hi
tn
(t) = ̂H(t1, . . . , ti−1, t, ti+1, . . . , tn)

=
n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f(s1, . . . , si−1, txi + (1 − t)Ai, si+1, . . . , sn)

× gk(xk)gk+1(xk+1)dxk+1dxk

=
n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f i
sn
(txi + (1− t)Ai)gk(xk)gk+1(xk+1)dxk+1dxk

=

n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f i
sn
(̂t)gk(xk)gk+1(xk+1)dxk+1dxk,

where ̂t = txi +(1− t)Ai. We will use this notation throughout the paper. We
also need a following lemma given by Levin and Stečkin in [17, p. 200] to get
desired results.

Lemma 3.1. Let f be convex on [a, b] and g be symmetric about (a+ b)/2 and

nonincreasing function on [a, (a+ b)/2]. Then

∫ b

a

f(x)g(x)dx ≥
1

b− a

∫ b

a

f(x)dx

∫ b

a

g(x)dx.

Theorem 3.2. Let f : ∆n → R be a convex mapping on n-coordinates on ∆n.

Then the mapping ̂H is convex on n-coordinates on [0, 1]n. We also have

(11) ̂H(t) ≥
n
∑

k=1

f(s1, . . . , si−1, Ak, Ak+1, . . . , sn)

and

̂H(t) ≤
n
∑

k=1

tk + tk+1(1 − tk)

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f(s1, . . . , sk−1, xk, xk+1, . . . , sn)

(12)

× gk(xk)gk+1(xk+1)dxk+1dxk
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+

n
∑

k=1

(1− tk)(1 − tk+1)f(s1, . . . , sk−1, Ak, Ak+1, . . . , sn),

with n+ 1 7→ 1.

Proof. Let u, v ∈ [0, 1] and α, β ∈ [0, 1] such that α+ β = 1, then we have

̂Hi
tn
(αu + βv)

=

n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f i
sn
( ̂αu+ βv)gk(xk)gk+1(xk+1)dxk+1dxk.

Now

̂αu+ βv = (αu+ βv)xi + (1− αu− βv)Ai

= α(uxi + (1 − u)Ai) + β(vxi + (1− v)Ai)

= αû+ βv̂.

This gives us

̂Hi
tn
(αu + βv)

=

n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f i
sn
(αû+ βv̂)gk(xk)gk+1(xk+1)dxk+1dxk.

Since given that f i
sn

is convex, therefore we have

̂Hi
tn
(αu + βv)

≤
n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

(αf i
sn
(û) + βf i

sn
(v̂))gk(xk)gk+1(xk+1)dxk+1dxk

= α ̂Hi
sn
(û) + β ̂Hi

sn
(v̂).

Which implies ̂Hi
tn

is convex, that is, ̂H is convex on n-coordinates.
To prove inequality (11), we consider

̂H(t) =

n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f i
sn
(si)gk(xk)gk+1(xk+1)dxk+1dxk

=

n
∑

k=1

1

Gk+1

∫ bk+1

ak+1

[

1

Gk

∫ bk

ak

f i
sn
(si)gk(xk)gk+1(xk+1)dxk

]

dxk+1.

Since f is convex on the kth coordinate and 1
Gk

∫ bk

ak

gk(xk)dxk = 1, we apply

Jensen’s inequality for integrals on kth coordinate to get

H(t)

≥

n
∑

k=1

1

Gk+1

∫ bk+1

ak+1

[

fk
sn

(

1

Gk

∫ bk

ak

(si)gk(xk)dxk

)]

gk+1(xk+1)dxk+1.
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Now it follows from Lemma 3.1, that

̂H(t) ≥

n
∑

k=1

1

Gk+1

∫ bk+1

ak+1

fk
sn

(

ak + bk

2

)

gk+1(xk+1)dxk+1.

Now using convexity of f on (k + 1)th coordinate. Again applying Jensen’s
inequality and Lemma 3.1 on (k + 1)th coordinate we get inequality in (11).

Now to prove inequality (12), we first use convexity of f on kth coordinate,
then on (k + 1)th coordinate, we have
(13)

̂H(t)

≤
tk

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

fk
sn
(xk)gk(xk)gk+1(xk+1)dxk+1dxk

+
1− tk

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

fk
sn

(

ak + bk

2

)

gk(xk)gk+1(xk+1)dxk+1dxk

≤
tktk+1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f(s1, . . . , si−1, xk, xk+1, sk+2, . . . , sn)

× gk(xk)gk+1(xk+1)dxk+1dxk

+
tk(1 − tk+1)

Gk

∫ bk

ak

f(s1, . . . , si−1, xk,
ak+1 + bk+1

2
, sk+2, . . . , sn)gk(xk)dxk

+
tk+1(1 − tk)

Gk+1

∫ bk+1

ak+1

f(s1, . . . , si−1, Ak, xk+1, sk+2, . . . , sn)gk(xk)dxk

+
(1− tk)(1− tk+1)

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f(s1, . . . , sk−1, Ak, Ak+1, sk+2, . . . , sn)

× gk(xk)gk+1(xk+1)dxk+1dxk.

Now by (4), we can have

n
∑

k=1

1

Gk+1

∫ bk+1

ak+1

f(s1, . . . , Ak, xk+1, . . . , sn)gk(xk+1)dxk+1

(14)

≤

n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f(s1, . . . , xk, xk+1, . . . , sn)gk(xk)gk+1(xk+1)dxk+1dxk

and from the first inequality in Theorem 2.3

n
∑

k=1

1

Gk

∫ bk

ak

f(s1, . . . , xk, Ak+1, . . . , sn)gk(xk+1)dxk+1

(15)
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≤

n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f(s1, . . . , xk, xk+1, . . . , sn)gk(xk)gk+1(xk+1)dxk+1dxk.

Now using the inequalities (14) and (15) in (13) we get (12). �

The particular case of above theorem is the following result, which is Theo-
rem 2.4 given in [12].

Corollary 3.3. Let f : ∆2 → R be a convex function on 2-coordinates. Then

the mapping ̂H, defined as

̂H(t, s)=
1

G1G2

∫ b

a

∫ d

c

f

(

tx+ (1− t)
a+ b

2
, sy + (1− s)

c+ d

2

)

g1(x)g2(y)dydx ,

is convex on the coordinates on [0, 1]2. Further if g1 is nonincreasing on [a,
(a+ b)/2] and g2 is nonincreasing on [c, (c+ d)/2], then

inf
(t,s)∈[0,1]2

̂H(t, s) = f

(

a+ b

2
,
c+ d

2

)

= ̂H(0, 0)

and

sup
(t,s)∈[0,1]2

̂H(t, s) =
1

G1G2

∫ b

a

∫ d

c

f(x, y)g1(x)g2(y)dydx = ̂H(1, 1).

Proof. By putting n = 2 in Theorem 3.2, we get required result. �

Remark 3.4. Further if we take g1(x) = 1 and g2(x) = 1, then we get Theorem
2 in [8].

Theorem 3.5. Let f : ∆n → R be a convex mapping on ∆n. Then the

mapping ̂H is convex on [0, 1]n. Also the mapping ̂h : [0, 1] → R, defined by
̂h(t) = ̂H(t, . . . , t) is convex and one has the bounds

(16) ̂h(t) ≥
n
∑

k=1

f(s1, . . . , si−1, Ak, Ak+1, . . . , sn)

and

̂h(t) ≤

n
∑

k=1

t(2− t)

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f(s1, . . . , sk−1, xk, xk+1, . . . , sn)(17)

× gk(xk)gk+1(xk+1)dxk+1dxk

+

n
∑

k=1

(1− t)2f(s1, . . . , sk−1, Ak, Ak+1, . . . , sn).

Proof. Let u,v ∈ [0, 1]n and α, β ∈ [0, 1] such that α+ β = 1. Then

̂H(αu+ βv) =

n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f
(

̂αu1 + βv1, . . . , ̂αun + βvn

)

× gk(xk)gk+1(xk+1)dxk+1dxk.
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For each i = 1, 2, . . . , n, we have

̂αui + βvi = (αui + βvi)xi + (1− αui − βvi)Ai

= α(uixi + (1− ui)Ai) + β(vixi + (1 − vi)Ai)

= αûi + βv̂i.

This gives

H(αu+ βv) =

n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f (αû1 + βv̂1, . . . , αûn + βv̂n)

× gk(xk)gk+1(xk+1)dxk+1dxk

≤

n
∑

k=1

1

GkGk+1

∫ bk

ak

∫ bk+1

ak+1

(αf(û1, . . . , ûn) + βf(v̂1, . . . , v̂n))

× gk(xk)gk+1(xk+1)dxk+1dxk

= αH(u) + βH(v).

This shows that ̂H is convex on [0, 1]n. Similar to above, we can show that ̂h

is convex on [0, 1] and using bounds of mapping ̂H in Theorem 3.2 we can get

bounds of mapping ̂h. �

The particular case of above theorem is the following result, which is Theo-
rem 2.6 in [12].

Corollary 3.6. Suppose that f : ∆2 → R is a convex mapping on 2-coordinates.

Let ̂h : [0, 1] → R be the mapping defined as ̂h(t) = ̂H(t, t), then ̂h is convex

on coordinates on ∆. Also if g1 is nonincreasing on [a, (a + b)/2] and g2 is

nonincreasing on [c, (c+ d)/2], then

inf
t∈[0,1]

̂h(t) = f

(

a+ b

2
,
c+ d

2

)

= ̂H(0, 0)

and

sup
t∈[0,1]

hg1g2(t) =
1

G1G2

∫ b

a

∫ d

c

f(x, y)g1(x)g2(y)dydx = Hg1g2(1, 1).

Proof. By putting n = 2 in Theorem (3.5), we get (3.6). �

Remark 3.7. Further if we take g1(x) = 1 and g2(x) = 1, the we obtain Theorem
3 in [8].
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