DOI QR코드

DOI QR Code

Pt@Cu/C Core-Shell Catalysts for Hydrogen Production Through Catalytic Dehydrogenation of Decalin

  • Kang, Ji Yeon (Department of Chemical Engineering, Myongji University) ;
  • Lee, Gihoon (Department of Chemical Engineering, Myongji University) ;
  • Jeong, Yeojin (Department of Chemical Engineering, Myongji University) ;
  • Na, Hyon Bin (Department of Chemical Engineering, Myongji University) ;
  • Jung, Ji Chul (Department of Chemical Engineering, Myongji University)
  • Received : 2015.11.30
  • Accepted : 2015.12.15
  • Published : 2016.01.27

Abstract

Pt@Cu/C core-shell catalysts were successfully prepared by impregnation of a carbon support with copper precursor, followed by transmetallation between platinum and copper. The Pt@Cu/C core-shell catalysts retained a core of copper with a platinum surface. The prepared catalysts were used for hydrogen production through catalytic dehydrogenation of decalin for eventual application to an onboard hydrogen supply system. Pt@Cu/C core-shell catalysts were more efficient at producing hydrogen via decalin dehydrogenation than Pt/C catalysts containing the same amount of platinum. Supported core-shell catalysts utilized platinum highly efficiently, and accordingly, are lower-cost than existing platinum catalysts. The combination of impregnation and transmetallation is a promising approach for preparation of Pt@Cu/C core-shell catalysts.

Keywords

References

  1. J. Houghton, Global Warming, Cambridge University press, Cambridge (1997).
  2. S. M. Ibrahim, Korean J. Chem. Eng., 31, 1792 (2014). https://doi.org/10.1007/s11814-014-0081-8
  3. L. Barreto, A. Makihara and K. Riahi, Int. J. Hydrogen Energy, 28, 267 (2003). https://doi.org/10.1016/S0360-3199(02)00074-5
  4. S. G. Chalk and J. F. Miller, J. Power Sources, 159, 73 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.058
  5. S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz, Catal. Today, 120, 246 (2007). https://doi.org/10.1016/j.cattod.2006.09.022
  6. J. V. Pande, A. Shukla and R. B. Biniwale, Int. J. Hydrogen Energy, 37, 6756 (2012). https://doi.org/10.1016/j.ijhydene.2012.01.069
  7. W. -F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, T. Zhu and R. R. Adzic, Angew. Chem. Int. Ed., 51, 6131 (2012). https://doi.org/10.1002/anie.201200699
  8. R. B. Biniwale, S. Rayalu, S. Devotta and M. Ichikawa, Int. J. Hydrogen Energy, 33, 360 (2008). https://doi.org/10.1016/j.ijhydene.2007.07.028
  9. L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001). https://doi.org/10.1038/35104634
  10. V. Ananthachar and J. J. Duffy, Sol. Energ., 78, 687 (2005). https://doi.org/10.1016/j.solener.2004.02.008
  11. G. Cacciola, N. Giordano and G. Restuccia, Int. J. Hydrogen Energy, 9, 411 (1984). https://doi.org/10.1016/0360-3199(84)90062-4
  12. A. A. Shukla, P. V. Gosavi, J. V. Pande, V. P. Kumar, K. V. R. Chary and R. B. Biniwale, Int. J. Hydrogen Energy, 35, 4020 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.014
  13. M. P. Lazaro, E. Garcla-Bordeje, D. Sebastian, M. J. Lazaro and R. Moliner, Catal. Today, 138, 203 (2008). https://doi.org/10.1016/j.cattod.2008.05.011
  14. D. Sebastian, C. Alegre, L. Calvillo, M. Perez, R. Moliner and M. J. Lazaro, Int. J. Hydrogen Energy, 39, 4109 (2014). https://doi.org/10.1016/j.ijhydene.2013.04.016
  15. C. Zhang, X. Liang and S. Liu, Int. J. Hydrogen Energy, 36, 8902 (2011). https://doi.org/10.1016/j.ijhydene.2011.04.175
  16. R. B. Biniwale, N. Kariya and M. Ichikawa, Catal. Lett., 105, 83 (2005). https://doi.org/10.1007/s10562-005-8009-x
  17. S. Hodoshima, S. Takaiwa, A. Shono, K. Satoh and Y. Saito, Appl. Catal. A: Gen., 283, 235 (2005). https://doi.org/10.1016/j.apcata.2005.01.010
  18. S. Hodoshima, H. Arai, S. Takaiwa and Y. Saito, Int. J. Hydrogen Energy, 28, 1255 (2003). https://doi.org/10.1016/S0360-3199(02)00250-1
  19. A. Shukla, S. Karmakar and R. B. Biniwale, Int. J. Hydrogen Energy, 37, 3719 (2012). https://doi.org/10.1016/j.ijhydene.2011.04.107
  20. J. K. Ali, E. J. Newson and D. W. T. Rippin, Chem. Eng. Sci., 49, 2129 (1994). https://doi.org/10.1016/0009-2509(94)E0035-O
  21. C. Shinohara, S. Kawakami, T. Moriga, H. Hayashi, S. Hodoshima, Y. Saito and S. Sugiyama, Appl. Catal. A: Gen., 266, 251 (2004). https://doi.org/10.1016/j.apcata.2004.02.014
  22. Y. Saito, K. Aramaki, S. Hodoshima, M. Saito, A. Shono, J. Kuwano and K. Otake, Chem. Eng. Sci., 63, 4935 (2008). https://doi.org/10.1016/j.ces.2007.11.036
  23. D. Jian-ping, S. Chang, S. Jin-ling, Z. Jiang-hong and Z. Zhen-ping, J. Fuel Chem. Techno., 37, 468 (2009). https://doi.org/10.1016/S1872-5813(10)60003-5
  24. M. Neergat and R. Rahul, J. Electrochem. Soc., 159, 234 (2012). https://doi.org/10.1149/2.039207jes
  25. A. Sarkar and A. Manthiram, J. Phys. Chem. C, 114, 4725 (2010).
  26. G. Lee, Y. Jeong, B.-G. Kim, J. S. Han, H. Jeong, H. B. Na and J. C. Jung, Catal. Communs., 67, 40 (2015). https://doi.org/10.1016/j.catcom.2015.04.002
  27. G. Lee, J. Y. Kang, Y. Jeong and J. C. Jung, Korean J. Mater. Res., 25, 191 (2015). https://doi.org/10.3740/MRSK.2015.25.4.191