DOI QR코드

DOI QR Code

A Study on the Flow and Dispersion in the Coastal Unconfined Aquifer (Development and Application of a Numerical Model)

해안지역 비피압 충적 대수층에서의 흐름 및 분산(수치모형의 개발 및 적용)

  • Kim, Sang Jun (Dept. of Civil and Environmental Engineering, Gachon University)
  • 김상준 (가천대학교 토목환경공학과)
  • Received : 2015.10.26
  • Accepted : 2015.11.26
  • Published : 2016.01.31

Abstract

In Korea, the aquifers at the coastal areas are mostly shallow alluvial unconfined aquifers. To simulate the flow and dispersion in unconfined aquifer, a FDM model has been developed to solve the nonlinear Boussinesq equation. Related analysis and verification have been executed. The iteration method is used to solve the nonlinearity, and the model shows 3-D shape because it is a 2-D y model that consider the undulation of water table and bottom. For the verification of the model, the output of flow module is compared to the 1-D analytic solution of Lee (1989) which have the drawdown or uplift boundary condition, and the two results show almost the same value. and the mass balance of dispersion module shows about 10% error. The developed model can be used for the analysis and design of the flow and dispersion in the unconfined aquifers. The model has been applied to the estuary area of Ssangcheon watershed, and the parameters have been deduced as a result : hydraulic conductivity is 90 m/day, and longitudinal dispersivity is 15 m. And the analysis with these parameters shows that the wells are situated in the influence circle of each others except for No. 7 well. Groundwater discharge to sea is $3700m^3/day$. And the chlorine ion ($cl^-$) concentration at the pumping wells increase at least 1000 mg/L if groundwater dam is not exist, so the groundwater dam plays an important role for the prevention of sea water intrusion.

얕은 비피압 충적층이 대부분인 우리나라 해안지역 대수층에서의 흐름과 분산을 분석하기 위하여, 비선형 Boussinesq 방정식에 대한 FDM 수치해석 모형을 개발하고, 이와 관련한 분석, 검증을 수행하였다. 수치해석 과정에서 비선형 문제를 해결하기 위하여 반복법을 사용하였으며, 수치모형은 자유 지하수면과 바닥의 굴곡을 고려하는 평면 2차원 모형이므로, 결국 3차원 형태를 나타낸다. 모형의 검증을 위해서, 흐름방정식의 경우 Lee (1989)가 제시한 급상승 혹은 급하강의 경계조건을 갖는 1차원 부정류 해석해와 비교하여 거의 일치하는 결과를 나타내었으며, 분산방정식의 mass balance 산출 결과는 10% 내외의 오차범위를 나타내었다. 개발된 모형은 비피압 대수층에서의 흐름 및 분산에 대한 평가 및 설계에 이용될 수 있다. 지하댐이 설치되어 있는 쌍천 하구역에서 본 모형을 적용하여 역해석에 의하여 관련 매개변수를 도출한 결과 투수계수는 90m/day, 종분산지수는 15 m로 산출되었다. 도출된 매개변수를 대상지역에 적용하여 갈수기를 기준으로 분석한 결과, 양수정은 7호 양수정을 제외하고는 서로 영향권 내에 있는 것으로 나타났다. 대수층을 통한 해안유출량은 $3700m^3/day$로 산출되었다. 또한 지하댐이 없을 경우 양수정의 염소이온($cl^-$) 농도는 1000 mg/L 이상 증가하는 것으로 나타나 지하댐의 역할이 큰 것으로 분석되었다.

Keywords

References

  1. Bedient, P.B., Rifai, H.S., and Newell, C.J. (1994). Groundwater contamination (Transport and remediation). Prentice Hall, Englewood Cliffs, N.J., pp. 119-128.
  2. Charbeneau, R.J. (2000). Groundwater hydraulics and pollutant transport. Prentice-Hall, Englewood Cliffs, N.J., pp. 48-55.
  3. Cupola, F., Tanda, M.G., and Zanini, A. (2015). "Laboratory estimation of dispersivity coefficient" Procedia environmental sciences, Vol. 25, pp. 74-81. https://doi.org/10.1016/j.proenv.2015.04.011
  4. Gelhar, L.W., Montoglou, A., Welty, C., and Rehfeldt, K.R. (1985). "A review of field-scale physical solute transport processes in saturated and unsaturated porous media." Final Proj. Rep. EPRI EA-4190, Electric Power Research Institute, Palo Alto, CA.
  5. Hong, S.H., Han, S.Y., and Park, N.S. (2003). "Assessment of potential groundwater development in coastal area." Journal of Korean Society of Civil Engineers, Vol. 23, No. 3B, pp. 201-207.
  6. Jiang, Q., and Tang, Y.I. (2015). "A general approximate method for the groundwater response problem caused by water level variation" Journal of Hydrology, Vol. 529. vol. 1, pp. 398-409. https://doi.org/10.1016/j.jhydrol.2015.07.030
  7. Jung, J.S., Kim, M..H., and Bang, K.M. (2002). "Analysis of stream-aquifer using nonlinear Boussinesq equation." Journal of the Environmental Sciences, Vol. 11, No. 1, pp. 57-61. https://doi.org/10.5322/JES.2002.11.1.057
  8. Kim, J.W., Lim K.N., Park H.J., and Rhee B.K. (2013). "Analyzing the effect of groundwater dam construction using groundwater modelling." Journal of Korean Society of Groundwater Environment, Vol. 18(3), pp. 11-23. https://doi.org/10.7857/JSGE.2013.18.3.011
  9. Kim, M.H., Ceon, I.K., and Jung, J.S. (2002). "An analysis of groundwater flow in the multi-aquifer system." Journal of KoSSGE, Vol. 7, No. 4, pp. 10-16.
  10. Kim, N.W., Na, H., and Chung, I.M. (2011). "Integrated surfacegroundwater hydrologic analysis for evaluating effectiveness of groundwater dam in Ssangcheon watershed." Econ. Environment. Geology, Vol. 44, No. 6, pp. 525-532. https://doi.org/10.9719/EEG.2011.44.6.525
  11. Knight, J.H. (2005). "Improving the Dupuit-Forchheimer groundwater free surface approximation" Advances in water resources, Vol. 28, No. 10, pp. 1048-1056. https://doi.org/10.1016/j.advwatres.2005.04.014
  12. Lee, J.K. (1989). "Unsteady groundwater flow in aquifer." Journal of Korea Water Resources Association, Vol. 22, No. 2, pp. 233-239.
  13. Lee, K.S. (2015). Numerical methods for engineers. Sehwa Publisher.
  14. McDonald, M.G., and Harbaugh, A.W. (1991). MODFLOW: A Modular three dimensional finite difference flow model. IGWMC Groundwater modeling Software, International Ground Water Modeling Center.
  15. Ministry of Construction and Transport (2002). Report for Plan of the development of groundwater dam. GW Project No. 2002-1a.
  16. Ministry of Science and Technology (2007). Application of sustainable water resources development technology by using groundwater dam. 21st Century Frontier R&D Program Report No. 3-6-2.
  17. Pinder, G.F. and Gray, W.G. (1997). Finite element simulation in surface and subsurface hydrology. Academic Press.
  18. Qu, W., Li, H., Wan, L., Wang, S., and Jiang, X. (2014). "Numerical simulation of steady-state salinity distribution and submarine griundwater discharges in homogeneous anisotropic coastal aquifers" Advances in Water Resources, Vol. 74, pp. 318-328. https://doi.org/10.1016/j.advwatres.2014.10.009
  19. Sun, N.Z. (Translation by Fan, P., and Shi, D.) (1996). Mathematical modelling of groundwater pollution. Springer-Verlag New York Inc., and Geological Publishing House. pp. 34-46.
  20. Teloglou, I.S., and Bansal, R.K. (2012). "Transient solution for stream-unconfined aquifer interaction due to time varing stream head and in the presence of leakage." Journal of Hydrology, Vol. 428/429, pp. 68-79. https://doi.org/10.1016/j.jhydrol.2012.01.024
  21. Todd, D.K. (1954). "Unsteady flow in porous media by means of Hele-Shaw viscous fluid model" Trans., AGU, Vol. 35, No. 6, Dec.
  22. Wang, H.F., and Anderson, M.P. (1982). Introduction to groundwater modelling. W.H. Freeman and Company.
  23. Xu, M., and Eckstein, Y., 1995, "Use of weighted least-squares method in evaluation of relationship between dispersivity and field scale." Groundwater, Vol. 33, No. 6, pp. 905-908. https://doi.org/10.1111/j.1745-6584.1995.tb00035.x
  24. Yang, J.S., Lim, C.H., Park, J.H., Park, C.K., and Jeong, G.C. (2005). "The correlation between the precipitation considering infiltration and groundwater level in Ssangchun watershed." The Journal of Engineering Geology , Vol. 15, No. 3, pp. 303-307.
  25. Yun, S.H., Park, J.H., and Park, C.K. (2004). "A study for reducing sea water intrusion in the groundwater dam operation." Journal of Korea Water Resources Association, Vol. 37, No. 2, pp. 97-108. https://doi.org/10.3741/JKWRA.2004.37.2.097