DOI QR코드

DOI QR Code

방류 흐름제어를 위한 투과성 잠제의 적용성 분석

Applicability of Permeable Submerged Breakwater for Discharged Flow Control

  • 허동수 (경상대학교 해양토목공학과) ;
  • 이우동 (경상대학교 해양산업연구소)
  • Hur, Dong-Soo (Department of Ocean Civil Engineering, Gyeongsang National University) ;
  • Lee, Woo-Dong (Institute of Marine Industry, Gyeongsang National University)
  • 투고 : 2015.10.14
  • 심사 : 2015.11.19
  • 발행 : 2016.01.31

초록

본 연구에서는 투과성 잠제의 형상 및 평면배치에 따른 방류 흐름제어 기능을 분석하기 위하여 유체 투과성 구조물 해저지반의 비선형 상호간섭을 직접해석 할 수 있는 PBM (Porous Body Model) 기반의 3차원 수치파동수조(NWT; numerical water tank) LES-WASS-3D를 이용하였다. 먼저 이용하는 LES-WASS-3D의 타당성 및 유효성을 확보하기 위하여 투과성 구조물를 통과하는 댐 붕괴파의 전파특성에 관한 수리모형실험과 계산결과를 비교 분석하였다. 투과성 잠제를 고려한 방류시뮬레이션으로부터 투과성 잠제의 적절한 형상 및 평면배치는 방류유속을 저감하고 흐름을 유도하는 데 상당히 효과적인 것을 알 수 있었다. 또한 투과성 잠제의 형상 및 평면배치에 따른 흐름제어에 대한 적용성은 평균류분포, 연직유속분포를 통하여 확인할 수 있었다.

The purpose of this study is to examine the control function of discharged flow due to the shape and plane arrangement of permeable submerged breakwater. For the discussion on it in detail, 3-dimensional numerical model based on PBM (Porous Body Model), which is able to simulate directly interaction of Fluid Permeable structure Seabed has been used to simulate water discharge in a NWT (Numerical Water Tank). To verify the applicability, LES-WASS-3D is analyzed comparing to the experimental result about propagation characteristics of dam-break wave through a permeable structure. Using the results obtained from numerical simulation, the effects of the shape and plane arrangement of submerged breakwater on reducing velocity and flow induction have been discussed related to the mean flow distribution and vertical distributions of horizontal velocities around ones.

키워드

참고문헌

  1. Brackbill, J.U., Kothe, D.B., and Zemach, C. (1992). "A continuum model for modeling surface tension." Journal of Computational Physics, Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  2. Caceres, I., Stive, M.J.F., Sanchez-Arcilla, A., and Trung, L.H. (2008). "Quantification of changes in current intensities induced by wave overtopping around low crested structures." Coastal Eng., Vol. 55, pp. 113-124. https://doi.org/10.1016/j.coastaleng.2007.09.003
  3. Cho, W.C. (2004). "Wave screening performance of the submerged breakwater with various crown widths." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 16, No. 4, pp. 206-212(in Korean).
  4. Cho, Y.S., and Jeong, W.C. (2003). "Analysis of bragg reflection of waves due to rectangular impermeable submerged breakwaters with two-dimensional finite element method." Journal of Korea Water Resources Association, Vol. 36, No. 3, pp. 447-454(in Korean). https://doi.org/10.3741/JKWRA.2003.36.3.447
  5. Ergun, S. (1952). "Fluid flow through packed columns." Chemical Engineering Progress, Vol. 48, No. 2, pp. 89-94.
  6. Garcia, N., Lara J.L., and Losada, I.J. (2004). "2-d numerical analysis of near-field flow at low-crested permeable beakwater." Coastal Eng., Vol. 51, pp. 991-1020. https://doi.org/10.1016/j.coastaleng.2004.07.017
  7. Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. (1991). "A dynamic subgrid-scale eddy viscosity model." Physics of Fluids, Vol. 3, pp. 1760-1765. https://doi.org/10.1063/1.857955
  8. Hsu, T.W., Hsieh, C.M., and Hwang, R.R. (2004). "Using RANS to simulate vortex generation and dissipation around impermeable submerged double breakwaters." Coastal Eng., Vol. 51, pp. 557-579. https://doi.org/10.1016/j.coastaleng.2004.06.003
  9. Hur, D.S. (2004). "Deformation of multi-directional random waves passing over an impermeable submerged breakwater installed on a sloping bed." Ocean Eng., Vol. 31, pp. 1295-1311. https://doi.org/10.1016/j.oceaneng.2003.12.005
  10. Hur, D.S., Cho, W.C., Yoon, J.S., Kim, I.H., and Lee, W.D. (2014). "Control technologies in reducing rip currents around the open inlet between two submerged breakwaters." Journal of Coastal Research: Special Issue 72 - The 3rd International Rip Current Symposium, pp. 75-80.
  11. Hur, D.S., Lee, K.H., and Choi, D.S. (2011). "Effect of the slope gradient of submerged breakwaters on wave energy dissipation." Engineering Applications of Computational Fluid Mechanics, Vol. 5, pp. 83-98. https://doi.org/10.1080/19942060.2011.11015354
  12. Hur, D.S., Lee, W.D., and Cho, W.C. (2012a). "Three-dimensional flow characteristics around permeable submerged breakwaters with open inlet." Ocean Eng., Vol. 44, pp. 100-116. https://doi.org/10.1016/j.oceaneng.2012.01.029
  13. Hur, D.S., Lee, W.D., and Cho, W.C. (2012b). "Characteristics of wave run-up height on a sandy beach behind dual-submerged breakwaters." Ocean Eng., Vol. 45, pp. 38-55. https://doi.org/10.1016/j.oceaneng.2012.01.030
  14. Johnson, H.K. (2006). "Wave modelling in the vicinity of submerged breakwaters." Coastal Eng., Vol. 53, pp. 39-48. https://doi.org/10.1016/j.coastaleng.2005.09.018
  15. Johnson, H.K., Karambas, T.V., Avgeris, I., Zanuttigh, B., Gonzalez-Maroco, D., and Caceres, I. (2005). "Modelling of waves and currents around submerged breakwaters." Coastal Eng., Vol. 52, pp. 949-969. https://doi.org/10.1016/j.coastaleng.2005.09.011
  16. Kim, N.H., and Woo, S.M., (2012). "The boundary element analysis of waves coming with oblique angle to a submerged breakwater." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 5B, pp. 295-300(in Korean). https://doi.org/10.12652/Ksce.2012.32.5B.295
  17. Koraim, A.S., Heikal, E.M. and Abo Zaid, A.A. (2014). "Hydrodynamic characteristics of porous weawall protected by submerged breakwater." Applied Ocean Research, Vol. 46, pp. 1-14. https://doi.org/10.1016/j.apor.2014.01.003
  18. Kramer, M., Zanuttigh, B., van der Meer, J.W., Vidal, C. and Gironella, F.X. (2005). "Laboratory experiments on lowcrested breakwaters." Coastal. Eng., Vol. 52, pp. 867-885. https://doi.org/10.1016/j.coastaleng.2005.09.002
  19. Lee, W.D., and Hur, D.S. (2014a). "Development of a 3-d Coupled hydro-morphodynamic model between numerical wave tank and morphodynamic model under wave-current interaction." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 5, pp. 1463-1476(in Korean). https://doi.org/10.12652/Ksce.2014.34.5.1463
  20. Lee, W.D., and Hur, D.S. (2014b). "Development of 3-d hydrodynamical model for understanding numerical analysis of density current due to salinity and temperature and its verification." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 3, pp. 859-871(in Korean). https://doi.org/10.12652/Ksce.2014.34.3.0859
  21. Lee, W.D., Hur, D.S. and Suh, S.B. (2011). "A numerical simulation on three-dimensional hydrodynamic characteristics of wave height and flow around asymmetric submerged breakwaters." Journal of Ocean Engineering and Technology, Vol. 25, No. 3, pp. 19-27(in Korean). https://doi.org/10.5574/KSOE.2011.25.3.019
  22. Lilly, D.K. (1992). "A proposed modification of the Germano subgrid-scale closure method." Physics of Fluids, Vol. 4, pp. 633-635. https://doi.org/10.1063/1.858280
  23. Liu, L.-F., Lin, P., Chang, K.A., and Sakakiyama, T. (1999). "Numerical modeling of wave interaction with porous structures." J. Waterway, Port, Coastal, Ocean Eng. ASCE, Vol. 125, No. 6, pp. 322-330. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:6(322)
  24. Liu, S., and Masliyah, J.H. (1999). "Non-linear flows in porous media." Journal of Non-Newtonian Fluid Mechanics, Vol. 86, pp. 229-252. https://doi.org/10.1016/S0377-0257(98)00210-9
  25. Losada, I.J., Patterson, M.D., and Losada, M.A. (1997). "Harmonic generation past a submerged porous step." Coastal Eng., Vol. 31, pp. 281-304. https://doi.org/10.1016/S0378-3839(97)00011-2
  26. Sakakiyama, T., and Kajima, R. (1992). "Numerical simulation of nonlinear wave interacting with permeable breakwater." Proc. 22nd Intl. Conf. on Coastal Eng., ASCE, pp. 1517-1530.
  27. Sharifahmadian, A., and Simons, R.R. (2014). "A 3d numerical model of nearshore wave field behind submerged breakwaters." Coastal Eng., Vol. 83, pp. 190-204. https://doi.org/10.1016/j.coastaleng.2013.10.016
  28. Smagorinsky, J. (1963). "General circulation experiments with the primitive equation." Monthly Weather Review, Vol. 91, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  29. Zanuttigh, B. (2007). "Numerical modelling of the morphological response induced by low-crested structures in Lido di Dante, Italy." Coastal Eng., Vol. 54, pp. 31-47. https://doi.org/10.1016/j.coastaleng.2006.08.003
  30. Zysermana, J.A., Johnson, H.K., Zanuttigh, B. and Martinelli, L. (2005). "Analysis of far-field erosion induced by lowcrested rubble-mound structures." Coastal Eng., Vol. 52, pp. 977-994. https://doi.org/10.1016/j.coastaleng.2005.09.013