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TWISTED TORUS KNOTS WITH

GRAPH MANIFOLD DEHN SURGERIES

Sungmo Kang

Abstract. In this paper, we classify all twisted torus knots which are

doubly middle Seifert-fibered. Also we show that all of these knots pos-
sibly except a few admit Dehn surgery producing a non-Seifert-fibered

graph manifold which consists of two Seifert-fibered spaces over the disk
with two exceptional fibers, glued together along their boundaries. This

provides another infinite family of knots in S3 admitting Dehn surgery

yielding such manifolds as done in [5].

1. Introduction

Throughout this paper, we denote by S(a1, . . . , an) the Seifert-fibered space
over a surface S with n exceptional fibers of indexes a1, . . . , an.

A simple closed curve k in the boundary of a genus two handlebody H is
said to be Seifert if H[k], i.e., the 3-manifold obtained by adding a 2-handle
to H along k, is a Seifert-fibered space and not a solid torus. It follows from
Proposition 1.1 that there are only two possibilities of H[k] for a Seifert curve
k: either D2(a, b) or an orientable Seifert-fibered space over the Möbius band
with at most one exceptional fiber.

Suppose K is a knot in S3 which lies in a genus two Heegaard surface Σ of
S3 bounding handlebodies H and H ′. The knot K in Σ is called Seifert/Seifert
if it is Seifert with respect to both H and H ′. Let γ be a surface slope with
respect to the Heegaard surface Σ, i.e., the isotopy class of a component of
∂N(K)∩Σ, where N(K) is a tubular neighborhood of K in S3. Lemma 2.1 in
[3] implies that if K is Seifert/Seifert, then the γ-Dehn surgery K(γ) is either
S2(a, b, c, d),RP2(a, b, c), K2(a, b), or a graph manifold, where K2 is a Klein
bottle. However K2(a, b) can be ruled out for homological reasons.

In [3], Dean introduced twisted torus knots which lie in a genus two Heegaard
surface standardly embedded in S3. He also provided three criteria for twisted
torus knots to be Seifert as a curve lying in the boundary of a genus two
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handlebody. The three criteria give rise to three types of Seifert curves called:
hyper Seifert-fibered; middle Seifert-fibered; end Seifert-fibered. Since twisted
torus knots lie in a genus two Heegaard surface bounding two handlebodies,
one can consider several kinds of twisted torus knots which are Seifert/Seifert.
For example, a twisted torus knot is called hyper/middle if it is hyper Seifert-
fibered in one handlebody and middle Seifert-fibered in the other handlebody.
If a twisted torus knot is middle Seifert-fibered in both of the handlebodies,
then it is said to be a middle/middle twisted torus knot.

In [5] and [6], the author classified all hyper/hyper and all hyper/middle
twisted torus knots respectively. Furthermore it is shown that hyper/hyper
twisted torus knots admit a Dehn surgery producing S2(a, b, c, d), while hy-
per/middle twisted torus knots admit Dehn surgery producing a graph manifold
which consists of two Seifert-fibered spaces over the disk with two exceptional
fibers, glued together along their boundaries.

The goal of this paper is to find all middle/middle twisted torus knots and to
show that all of these knots possibly except a few admit Dehn surgery yielding
a non-Seifert-fibered graph manifold whose decomposing pieces are manifolds
D2(a, b) and D2(c, d).

As will be explained in Section 2, twisted torus knots are parameterized by
p, q, r,m, and n, and are denoted by K(p, q, r,m, n), where p, q and m,n come
from a (p, q)-torus knot and an (m,n)-torus knot respectively, and r means the
number of parallel arcs of a (p, q)-torus knot with 0 < r ≤ p + q. If a twisted
torus knot is hyper/middle, then m > 1 and n = 1. However if a twisted torus
knot is middle/middle, then m = n = 1. In this sense, it is worthwhile to show
that middle/middle twisted torus knots admit Dehn surgery producing graph
manifolds, which provide another infinite family of knots in S3 admitting Dehn
surgery yielding such manifolds as done in [5].

We finish this section by giving the following proposition mentioned earlier.

Proposition 1.1. Let H be a genus two handlebody and k a simple closed curve
on ∂H. If H[k] is a Seifert-fibered space, then H[k] is a Seifert-fibered space
over the disk with two exceptional fibers, or H[k] is an orientable Seifert-fibered
space over the Möbius band with at most one exceptional fiber.

Proof. Let M be a 3-manifold obtained from H[k] by attaching a 2-handle
along a regular fiber of H[k] and then filling in its boundary sphere with a
3-ball. Since H is a genus two handlebody, this construction of M implies that
M admits a genus two Heegaard splitting. If M contains an essential sphere,
then M = M1#M2 and by Haken’s lemma [4], M1 and M2 are lens spaces.

Suppose for contradiction first that H[k] is a Seifert-fibered space over the
disk with three exceptional fibers. Figure 1 shows the base space disk with
three cone points and two properly embedded arcs (dotted arcs) each of which
with a boundary arc contains one cone point.

Each arc gives rise to an essential annulus in the Seifert-fibered space H[k]
whose boundary components are regular fibers. Then attaching a 2-handle
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Figure 1. The base space disk with three cone points and
two properly embedded arcs.

along a regular fiber makes these two essential annuli to be two essential spheres
in M . This implies that M is the connected sum of three manifolds. This is
a contradiction that M is the connected sum of two lens spaces. For the case
that there are more than three exceptional fibers, the similar argument can
apply.

Second, suppose H[k] is an orientable Seifert-fibered space over the Möbius
band with two exceptional fibers. Then as we did in the disk case, we consider
two properly embedded arcs each of which with a boundary arc contains one
cone point. These two arcs yield two essential annuli in H[k] and attaching a
2-handle along a regular fiber yields two essential spheres in M . This implies
that M is the connected sum of three manifolds, which is a contradiction. For
the case that there are more than two exceptional fibers, the similar argument
can apply.

If the base space of H[k] is neither a disk nor the Möbius band, then we can
consider two nonparallel nonseparating properly embedded arcs in the base
space. These arcs yield two nonseparating annuli in H[k] and attaching a 2-
handle along a regular fiber yields two nonseparating spheres in M . These
spheres induce S2 × S1 summands in M . Therefore M is the connected sum
of more than two manifolds, a contradiction. �

2. Three types of a Seifert curve for twisted torus knots

The definition and properties of twisted torus knots were introduced by
Dean in [3], and the brief explanation on how to construct twisted torus knots
was given in [5]. Also the definitions, lemmas and propositions in [3] related to
Seifert/Seifert twisted torus knots were given in [5]. However for the purpose of
this paper that they will be applied significantly several times in the rest of the
paper, we describe them here in the same manner as in [5] for the convenience
of readers.

Let V1 and V2 be two standardly embedded disjoint unlinked solid tori in
S3. Let T (p, q) be a (p, q)-torus knot which lies in the boundary of V1. Let
rT (m,n) be the r parallel copies of T (m,n) which lie in the boundary of V2.
Here we may assume that 0 < q < p and m,n > 0. Let D1 be a disk in ∂V1 so
that T (p, q) intersects D1 in r disjoint parallel arcs, where 0 < r ≤ p+q, and D2

a disk in ∂V2 so that rT (m,n) intersects D2 in r disjoint parallel arcs, one for
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Figure 2. A (7, 3)-torus knot T (7, 3) and 3 parallel copies
3T (2, 1) of a (2, 1)-torus knot.

Figure 3. A twisted torus knot K(7, 3, 3, 2, 1).

each component of rT (m,n). Figure 2 illustrates a (7, 3)-torus knot T (7, 3),
3 parallel copies 3T (2, 1) of a (2, 1)-torus knot, and disks D1 and D2. We
excise the disks D1 and D2 from their respective tori and glue the punctured
tori together along their boundaries so that the orientations of T (p, q) and
rT (m,n) align correctly. The resulting one must yield a knot which lies in the
boundary of a genus two handlebody H which is obtained from V1 and V2 by
gluing the disks D1 and D2. This knot is called a twisted torus knot, which is
denoted by K(p, q, r,m, n). Figure 3 shows a twisted torus knot K(7, 3, 3, 2, 1).

Let H ′ = S3 −H and Σ = ∂H = ∂H ′. Then (H,H ′; Σ) forms a genus
two Heegaard splitting of S3. In the rest of the paper we regard all twisted
torus knots as lying in this genus two Heegaard surface Σ bounding the two
handlebodies H and H ′ of S3 as described above.

Proposition 2.1. The surface slope γ of a twisted torus knot K(p, q, r,m, n)
with respect to the Heegaard surface Σ is pq + r2mn.

Proof. This is Proposition 3.1 in [3]. �

Let Ga,b = 〈x, y | xayb 〉 be a group presentation with two generators x, y
and one relator xayb. An element w in the free group 〈x, y 〉 is said to be (a, b)
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Figure 4. The generators of π1(H) and π1(H ′).

Seifert-fibered if 〈x, y | w 〉 is isomorphic to Ga,b. The following lemma indicates
that geometric and algebraic definitions of a Seifert curve are equivalent.

Lemma 2.2. Let k be a simple closed curve in the boundary of a genus two
handlebody H. k is a Seifert curve in H with H[k] = D2(a, b) if and only if k
in π1(H) is (a, b) Seifert-fibered.

Proof. This is Lemma 2.2 in [3]. �

Let wp,q,r,m,n and w′p,q,r,m,n be the conjugacy classes of a twisted torus knot
K(p, q, r,m, n) in π1(H) = 〈x, y〉 and π1(H ′) = 〈x′, y′〉 respectively, where x
and y are generators in H and x′ and y′ are generators in H ′, which are dual
to the cutting disks as shown in Figure 4. Note that w′p,q,r,m,n is equal to
wq,p,r,n,m with x replaced by x′ and y replaced by y′, and by the construction
of a twisted torus knot, wp,q,r,m,n (w′p,q,r,m,n, resp.) does not depend on the
parameter n (m, resp.). Therefore we often omit n (m, resp.).

There are more properties in wp,q,r,m,n. For g and h in a group G, we say g
is equivalent to h, denoted by g ≡ h, if there is an automorphism of G carrying
g to h.

Lemma 2.3. The word wp,q,r,m has the following properties.

(1) wp,q,r,m ≡ wp,q′,r,m if q ≡ ±q′ mod p.
(2) wp,q,r,m ≡ wp,q,r′,m if r ≡ ±r′ mod p.

Proof. This is Lemma 3.3 in [3]. �

For integers p and q, q̂−1 is defined to be the smallest positive integer congru-
ent to ±q−1 mod p. For a real number x, x̃ denotes the least integer function.
The following proposition gives three criteria to determine which wp,q,r,m,n are
Seifert-fibered in π1(H). The three criteria were introduced and proved in [3].

Proposition 2.4. Let w = wp,q,r,m be a conjugacy class in π1(H) of a twisted
torus knot K(p, q, r,m, n). Let q′ be an integer such that q ≡ ±q′ mod p with
0 < q′ < p/2.

(1) If m > 1 and r ≡ ±1 or ±q′ mod p, then w is (p,m) Seifert-fibered.
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(2) If m = 1 and r ≡ ±βq′ mod p, where 1 < β ≤ p/q′ with p− βq′ > 1,
then w is (β, p− βq′) Seifert-fibered.

(3) If m = 1 and r ≡ ±r̄ mod p, where 1 < r̄ ≤ ˜
p/q̂′

−1
with p− r̄q̂′

−1
> 1,

then w is (r̄, p− r̄q̂′
−1

) Seifert-fibered.

Proof. The parts (1), (2), and (3) are Propositions 3.6, 3.8, and 3.10 respec-
tively in [3]. �

The first type (1), the second type (2), and the third type (3) of Seifert-
fibered wp,q,r,m (or K(p, q, r,m, n)) in Proposition 2.4 are called hyper Seifert-
fibered, middle Seifert-fibered, and end Seifert-fibered in H respectively. Also
it is conjectured in [3] that these three types describe all wp,q,r,m that are
Seifert-fibered. With respect to the other handlebody H ′ we can apply Propo-
sition 2.4 by switching p and q, and m and n to say that w′p,q,r,n (wq,p,r,n or
K(p, q, r,m, n)) is hyper Seifert-fibered, middle Seifert-fibered, or end Seifert-
fibered in H ′.

In this paper, we consider a twisted torus knot K(p, q, r,m, n) which is mid-
dle Seifert-fibered in both H and H ′. This knot is called a middle/middle
twisted torus knot. In Section 3 we will find all possible values of the param-
eters p, q, r,m, and n such that K(p, q, r,m, n) is middle/middle. And then in
Section 4 we will show that the γ-Dehn surgery K(γ), where γ is a surface
slope, is a non-Seifert-fibered graph manifold whose decomposing pieces are
D2(a, b) and D2(c, d).

3. Finding the parameters p, q, r,m, and n

In this section we find all possible values of the parameters p, q, r,m, and n
for which K(p, q, r,m, n) is middle Seifert-fibered in both H and H ′.

Theorem 3.1. Let K be a twisted torus knot K(p, q, r,m, n) lying in a genus
two Heegaard splitting (H,H ′; Σ) of S3 with 0 < q < p, gcd(p, q) = 1, and
0 < r ≤ p + q. K is a middle/middle twisted torus knot if and only if the
parameters p, q, r,m, and n take one of the following values in Table 1. Table 2
describes H[K] and H ′[K] explicitly.

Proof. Since K is middle Seifert-fibered in both H and H ′, by Proposition 2.4
m = n = 1. If q = 1, then K is primitive in H ′ by Theorem 3.4 in [3], i.e.,
H ′[K] is a solid torus and thus K is not Seifert. If r = 1, then K becomes a
torus knot. Therefore we may assume that 1 < q < p and 1 < r ≤ p+ q.

Let p̄ = p−iq such that 0 < p̄ < q. Note that since gcd(p, q) = 1, gcd(q, p̄) =
1. Then we divide the argument into four cases:

1. p > 2q and q > 2p̄.
2. p > 2q and q < 2p̄.
3. p < 2q and q > 2p̄.
4. p < 2q and q < 2p̄.
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Table 1. All possible values of parameters p, q, r,m, and n
for which K(p, q, r,m, n) is middle Seifert-fibered in both H
and H ′.

(p, q, r,m, n) satisfying

I (βq + p̄, q, βq + 2p̄, 1, 1) 1 < p̄ < q, |q − 2p̄| > 1, β > 1
II ((α+ 1)p̄+ q̄, αp̄+ q̄, βp̄, 1, 1) 0 ≤ q̄ < p̄, 1 < β ≤ α
III ((α+ 1)p̄+ q̄, αp̄+ q̄, (α− β)p̄+ q̄, 1, 1) 0 < q̄ < p̄, 1 < β ≤ α
IV ((α+ 1)p̄+ q̄, αp̄+ q̄, (α+ β + 1)p̄+ q̄, 1, 1) 0 ≤ q̄ < p̄, 1 < β < α
V ((α+ 1)p̄+ q̄, αp̄+ q̄, (2α− β)p̄+ 2q̄, 1, 1) 0 < q̄ < p̄, 1 < β < α
VI (2p̄+ q̄, p̄+ q̄, 2p̄, 1, 1) 0 < q̄ < p̄

Table 2. H[K] and H ′[K] when K is middle Seifert-fibered
in both H and H ′.

H[K] H ′[K]

I D2(β, p̄) D2(2, |q − 2p̄|)
II D2(β, (α− β + 1)p̄+ q̄) D2(β, (α− β)p̄+ q̄)
III D2(β + 1, (α− β)p̄+ q̄) D2(β, (α− β)p̄+ q̄)
IV D2(β, (α− β + 1)p̄+ q̄) D2(β + 1, (α− β − 1)p̄+ q̄)
V D2(β + 2, (α− β − 1)p̄+ q̄) D2(β, (α− β)p̄+ q̄)
VI D2(2, q̄) D2(2, p̄− q̄)

Case 1: Suppose p > 2q and q > 2p̄.
On H, by Proposition 2.4 wp,q,r,1 satisfies r ≡ ±β1q mod p, where 1 < β1 <

p/q, and wp,q,r,1 is (β1, p − β1q) Seifert-fibered provided that β1, p − β1q > 1.
Thus the possible values of r are

r = β1q, p− β1q or 2p− β1q.

On H ′, by Lemma 2.3 wq,p,r,1 is equivalent to wq,p̄,r,1. Since p ≡ p̄ mod q and
p̄ < q/2, by Proposition 2.4 wq,p̄,r,1 satisfies r ≡ ±β2p̄ mod q, where 1 < β2 <
q/p̄, and wq,p̄,r,1 is (β2, q − β2p̄) Seifert-fibered provided that β2, q − β2p̄ > 1.
Thus the possible values of r are

r = kq ± β2p̄ for some nonnegative integer k.

We need to find the parameters p, q, r by equating both values of r on H
and H ′. In other words, we need to consider the following three subcases:

(1) r = β1q = kq ± β2p̄,
(2) r = p− β1q = kq ± β2p̄,
(3) r = 2p− β1q = kq ± β2p̄.

Subcase (1): r = β1q = kq ± β2p̄. Replacing p̄ by p − iq, we obtain that
±β2p = (β1 − k ± iβ2)q. Since gcd(p, q) = 1, q divides β2, i.e., q ≤ β2. This is
a contradiction to q − β2p̄ > 1.
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Subcase (2): r = p − β1q = kq ± β2p̄. Similarly, we get that (−1 ± β2)p =
(−β1 − k± iβ2)q and then q ≤ β2 ± 1, which is a contradiction to q− β2p̄ > 1.

Subcase (3): r = 2p − β1q = kq ± β2p̄. First, we assume that 2p − β1q =
kq − β2p̄. Then by replacing p̄ by p− iq, we obtain

(2 + β2)p = (β1 + k + iβ2)q.

From the conditions that gcd(p, q) = 1 and q − β2p̄ > 1, q = β2 + 2 and p̄ = 1.
Since p = iq + p̄ and r = 2p − β1q, p = iq + 1 and r = (2i − β1)q + 2. The
inequality 1 < r ≤ p+q becomes 1 < (2i−β1)q+2 ≤ (i+1)q+1, which implies
that i < β1 + 1. On the other hand, 1 < p − β1q becomes 1 < (i − β1)q + 1,
which implies that β1 < i, a contradiction.

Second, we assume that 2p− β1q = kq + β2p̄. Then

(2− β2)p = (β1 + k − iβ2)q.

If β2 6= 2, then q < β2, a contradiction. Therefore β2 = 2. Also k = 2i − β1

and r = kq + 2p̄. Using the equations p = iq + p̄ and r = 2p − β1q, and the
inequalities 1 < r ≤ p+q and 1 < p−β1q, we obtain that 1 < (i−β1)q+ p̄ ≤ q.
Thus i = β1 and k = 2i−β1 = β1. Putting these values of i and k in p and r, we
obtain that p = β1q+p̄, r = β1q+2p̄. This belongs to the solution (I) in Table 1
with β = β1. For H[K] and H ′[K], since wp,q,r,1 is (β1, p− β1q) Seifert-fibered
and wq,p,r,1 is (β2, q−β2p̄) Seifert-fibered, by Lemma 2.2 H[K] = D2(β, p̄) and
H ′[K] = D2(2, q − 2p̄) as desired in Table 2.

Case 2: Suppose p > 2q and q < 2p̄.
As in Case 1, on H wp,q,r,1 satisfies r ≡ ±β1q mod p, where 1 < β1 < p/q

and wp,q,r,1 is (β1, p − β1q) Seifert-fibered with β1, p − β1q > 1. Thus the
possible values of r are

r = β1q, p− β1q or 2p− β1q.

However, we have different situation onH ′. Since q < 2p̄, we let ¯̄p = q−p̄ so that
we can apply Proposition 2.4. Since ¯̄p < q/2 and also p ≡ − ¯̄p mod q, wq,p,r,1 is
equivalent to wq, ¯̄p,r,1 which satisfies r ≡ ±β2 ¯̄p mod q, where 1 < β2 < q/ ¯̄p and
wq, ¯̄p,r,1 is (β2, q − β2 ¯̄p) Seifert-fibered with β2, q − β2 ¯̄p > 1. Thus the possible
values of r are

r = kq ± β2 ¯̄p for some nonnegative integer k.

In order to find values of p, q, and r, we consider the following three subcases:

r = β1q = kq ± β2 ¯̄p, r = p− β1q = kq ± β2 ¯̄p, r = 2p− β1q = kq ± β2 ¯̄p.

By applying the similar argument as in Case 1, it is easy to see that the first
two subcases induce a contradiction to q − β2 ¯̄p > 1.

For the third, we first assume that r = 2p− β1q = kq− β2 ¯̄p. By replacing ¯̄p
by q − p̄ (= (i+ 1)q − p), we obtain the equation

(2− β2)p = (k − (i+ 1)β2 + β1)q.
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If β2 6= 2, then q < β2, a contradiction. Therefore β2 = 2 and thus k =
2(i + 1) − β1. Using the equations p = iq + p̄ and r = 2p − β1q, and the
inequalities 1 < r ≤ p+q and p−β1q > 1, we obtain that 1 < (i−β1)q+ p̄ ≤ q.
Thus i = β1 and k = β1 + 2. In conclusion, p = β1q+ p̄ and r = β1q+ 2p̄. This
belongs to the solution (I) with β = β1. For H[K] and H ′[K], since wp,q,r,1
is (β1, p − β1q) Seifert-fibered and wq,p,r,1 is (β2, q − β2 ¯̄p) Seifert-fibered, by
Lemma 2.2 H[K] = D2(β, p̄) and H ′[K] = D2(2, 2p̄− q) as desired in Table 2.

Second, we assume that r = 2p − β1q = kq + β2 ¯̄p. By replacing ¯̄p by q − p̄
(= (i+ 1)q − p), we obtain the equation

(2 + β2)p = (k + (i+ 1)β2 + β1)q.

From the conditions that gcd(p, q) = 1 and q−β2 ¯̄p > 1, it follows that q = β2+2,
¯̄p = 1 and p = k + (i + 1)β2 + β1. As in the case of r = 2p − β1q = kq − β2 ¯̄p
above, the inequality 1 < (i − β1)q + p̄ ≤ q holds and then i = β1. Since
q = β2 + 2 and p = (i+ 1)q− 1 = k+ (i+ 1)β2 + β1, k = β1 + 1. In conclusion,
p = β1q + p̄, r = β1q + 2p̄, which belongs to the solution (I).

Case 3: Suppose p < 2q and q > 2p̄.
Since p < 2q, i = 1 and p̄ = p − q in the equation p = iq + p̄. Also q ≡ −p̄

mod p and p̄ < p/2. On H wp,q,r,1 ≡ wp,p̄,r,1, which satisfies r ≡ ±β1p̄ mod
p because of Proposition 2.4, where 1 < β1 < p/p̄, and wp,q,r,1 is (β1, p− β1p̄)
Seifert-fibered with β1, p− β1p̄ > 1. Thus the possible values of r are

r = β1p̄, p− β1p̄, p+ β1p̄, or 2p− β1p̄.

On H ′ wq,p,r,1 ≡ wq,p̄,r,1, which satisfies r ≡ ±β2p̄ mod q, where 1 < β2 < q/p̄,
and wq,p̄,r,1 is (β2, q − β2p̄) Seifert-fibered with β2, q − β2p̄ > 1. Thus the
possible values of r are

r = kq ± β2p̄ for some nonnegative integer k.

We consider the following four subcases:
(1) r = β1p̄ = kq ± β2p̄,
(2) r = p− β1p̄ = kq ± β2p̄,
(3) r = p+ β1p̄ = kq ± β2p̄,
(4) r = 2p− β1 = kq ± β2p̄.

Subcase (1): r = β1p̄ = kq±β2p̄. First, we assume that r = β1p̄ = kq+β2p̄.
Then (β1−β2)p̄ = kq. If β1 = β2, then k = 0, and thus p = q+p̄, r = β1p̄ = β2p̄.
This gives the solution (II) in Table 1 by letting q = αp̄+ q̄ and β = β2, where
0 ≤ q̄ < p̄. Here α ≥ β because q − β2p̄ > 1. Suppose β1 6= β2. Since
gcd(p̄, q) = 1, from the equation (β1 − β2)p̄ = kq we see that β1 − β2 = lq
and k = lp̄ for some positive integer l. However the inequalities p − β1p̄ > 1
and p < 2q together with β1 = lq + β2 force l = p̄ = 1, which implies that
k = lp̄ = 1, β1 = q + β2, and p = q + p̄ = q + 1. Then β1 ≥ p, which is a
contradiction to p− β1p̄ > 1.

Second, we assume that r = β1p̄ = kq − β2p̄. Then (β1 + β2)p̄ = kq,
which implies that β1 + β2 = lq and k = lp̄ for some positive integer l. The
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inequalities p − β1p̄ > 1 and q − β2p̄ > 1 induce p + q > (β1 + β2)p̄ + 2.
Combining with β1 + β2 = lq and p < 2q, we see that k = lp̄ is either 1 or
2 and thus l is either 1 or 2. If l = 2, then β1 + β2 = 2q and p̄ = 1, which
lead to β1 = q + q − β2 and p = q + 1. Then p < β1 because q − β2p̄ > 1, a
contradiction. Therefore l = 1 and then β1 + β2 = q and k = p̄ (= 1 or 2).
If k = p̄ = 2, then we have the inequality p + q > (β1 + β2)p̄ + 2 = 2q + 2.
However p + q = 2q + p̄ = 2q + 2, a contradiction. Therefore k = p̄ = 1. This
yields the solution p = β1 + β2 + 1, q = β1 + β2, and r = β1. This belongs to
the solution (II) by letting p̄ = 1, q̄ = 0, β = β1, and α = β1 + β2 in Table 1.

Subcase (2): r = p − β1p̄ = kq ± β2p̄. First, assume that r = p − β1p̄ =
kq + β2p̄. By replacing p by q + p̄, we obtain the equation

(1− β1 − β2)p̄ = (k − 1)q.

Since 1 − β1 − β2 < 0 and gcd(q, p̄) = 1, k = 0 and p̄ = 1. Therefore q =
β1 + β2 − 1, p = β1 + β2, and r = β2. This belongs to the solution (II) by
letting p̄ = 1, q̄ = 0, β = β2, and α = β1 + β2 − 1 in Table 1.

Second, we assume that r = p−β1p̄ = kq−β2p̄. Then we have the equation

(1− β1 + β2)p̄ = (k − 1)q.

If k > 1, then 1−β1+β2 = lq for some positive integer l, which is a contradiction
to q > β2. Note that since r > 0 and r = kq−β2p̄, k > 0. Therefore k = 1 and
β2 = β1 − 1. This gives rise to p = q + p̄ and r = q − β2p̄, which induces the
solution (III) in Table 1 by letting q = αp̄ + q̄ and β = β2, where 0 ≤ q̄ < p̄.
However if q̄ = 0, then p̄ = 1, which belongs to the solution (II). Thus we may
assume that 0 < q̄ < p̄ in the solution (III).

Subcase (3): r = p+ β1p̄ = kq ± β2p̄. Assume that r = p+ β1p̄ = kq + β2p̄.
Then

(1 + β1 − β2)p̄ = (k − 1)q.

Also since 0 < r ≤ p+q, k = 0, 1, or 2. If k = 0, then p̄ = 1 and β2−β1−1 = q,
which is a contradiction to q > β2. If k = 2, then p̄ = 1 and 1 + β1 − β2 = q,
i.e., β1 = q + β2 − 1, which is a contradiction to p = q + 1 > β1. Therefore
k must be 1 and thus β2 = β1 + 1. We have the solution that p = q + p̄ and
r = p+β1p̄. This gives rise to the solution (IV) in Table 1 by letting q = αp̄+ q̄
and β = β1, where 0 ≤ q̄ < p̄, and α > β because q − β2p̄ > 1.

Now we assume that r = p+ β1p̄ = kq − β2p̄. Then

(1 + β1 + β2)p̄ = (k − 1)q,

which implies k > 1. Furthermore, since 0 < r ≤ p + q, k = 2 or 3. If k = 2,
then p̄ = 1 and q = 1 + β1 + β2. Also p = 2 + β1 + β2 and r = p + β1.
This solution belongs to the solution (IV) in Table 1 by letting p̄ = 1, q̄ = 0,
β = β1, and α = β1 + β2 + 1. Suppose k = 3. Then from the equation
(1+β1 +β2)p̄ = (k−1)q, p̄ is either 1 or 2. If p̄ = 1, Then 1+β1 +β2 = 2q and
p = q+1. This is a contradiction to the inequalities p−β1p̄ > 1 and q−β2p̄ > 1,
which implies that p+ q > (β1 + β2)p̄+ 2. If p̄ = 2, then q = 1 + β1 + β2 and
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thus p = q + 2. Putting q = 1 + β1 + β2 and p = q + 2 = 3 + β1 + β2 in the
inequalities p − β1p̄ > 1 and q − β2p̄ > 1, we see that β2 < β1 < β2 + 2, i.e.,
β1 = β2 + 1. This implies that q = 2β2 + 2 and p = 2β2 + 4, both of which are
even, a contradiction to gcd(p, q) = 1.

Subcase (4): r = 2p−β1p̄ = kq±β2p̄. Assume that r = 2p−β1p̄ = kq+β2p̄.
Then

(2− β1 − β2)p̄ = (k − 2)q.

Since 2 − β1 − β2 < 0, k = 0 or 1. If k = 1, then p̄ = 1 and q = β1 + β2 − 2.
Also p = β1 + β2 − 1 and r = q + β2, which belongs to the solution (IV) in
Table 1 by letting p̄ = 1, q̄ = 0, β = β2 − 1, and α = β1 + β2 − 2. Suppose
k = 0. Then p̄ = 1 or 2. If p̄ = 1, then β1 + β2 = 2q + 2 > q + 1 + q = p + q,
a contradiction. If p̄ = 2, then β1 + β2 = q + 2 and p = q + 2. This is a
contradiction to p+ q > (β1 + β2)p̄+ 2.

Second, we assume that r = 2p− β1p̄ = kq − β2p̄. Then

(2− β1 + β2)p̄ = (k − 2)q.

Since 0 < r ≤ p+ q and r = kq − β2p̄, k = 1, 2 or 3. If k = 1, then p̄ = 1 and
2− β1 + β2 = −q. This is a contradiction since p = q+ 1 and p > β1. If k = 3,
then similarly β2 = q+β1− 2, a contradiction to q > β2. Thus k = 2 and then
β1 = β2 + 2. This yields that r = 2p− (β2 + 2)p̄ = 2q−β2p̄, which leads to the
solution (V) in Table 1 by letting q = αp̄+ q̄ and β = β2, where 0 ≤ q̄ < p̄, and
α > β because p − β1p̄ > 1. Furthermore, if q̄ = 0, then p̄ = 1, which belongs
to the solution (IV). Thus we may assume that 0 < q̄ < p̄ in the solution (V).

Case 4: Suppose p < 2q and q < 2p̄.
Since p < 2q, i = 1 and p̄ = p−q in the equation p = iq+p̄. Also since q < 2p̄,

we let ¯̄p = q − p̄. Then 2¯̄p < q and p ≡ − ¯̄p mod q. On H, wp,q,r,1 ≡ wp,p̄,r,1
which satisfies r ≡ ±β1p̄ mod p, where 1 < β1 < p/p̄ and wp,q,r,1 is (β1, p−β1p̄)
Seifert-fibered with β1, p− β1p̄ > 1. The inequality p− β1p̄ > 1 forces β1 to be
2 as follows.

Claim. β1 = 2.

Proof. The inequalities p − β1p̄ > 1, i.e., p > β1p̄ and q < 2p̄ imply that
p̄ = p− q > β1p̄− 2p̄ = (β1 − 2)p̄. Therefore β1 = 2. �

So wp,q,r,1 is (2, p− 2p̄) Seifert-fibered with p− 2p̄ > 1 and the possible values
of r are

r = 2p̄, p− 2p̄, p+ 2p̄, or 2p− 2p̄.

On H ′, wq,p,r,1 ≡ wq, ¯̄p,r,1 which satisfies r ≡ ±β2 ¯̄p mod q, where 1 < β2 < q/ ¯̄p
and wq, ¯̄p,r,1 is (β2, q − β2 ¯̄p) Seifert-fibered with β2, q − β2 ¯̄p > 1. Thus the
possible values of r are

r = kq ± β2 ¯̄p for some nonnegative integer k.

We consider the following four subcases:
(1) r = 2p̄ = kq ± β2 ¯̄p,
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(2) r = p− 2p̄ = kq ± β2 ¯̄p,
(3) r = p+ 2p̄ = kq ± β2 ¯̄p,
(4) r = 2p− 2p̄ = kq ± β2 ¯̄p.

Subcase (1): r = 2p̄ = kq ± β2 ¯̄p. First, we assume that r = 2p̄ = kq + β2 ¯̄p.
Then (2 +β2)p̄ = (k+β2)q and also k = 0, 1, or 2 because 0 < r ≤ p+ q. Thus
2 + β2 = lq and k + β2 = lp̄ for some positive integer l. Since β2 = lq − 2 =
(l− 1)q+ q− 2 and β2 < q, l must be 1. Thus q = 2 + β2 and p̄ = β2 + k. The
inequality p− 2p̄ > 1 implies that

p− 2p̄ = q − p̄ = 2 + β2 − (β2 + k) = 2− k > 1⇔ k < 1.

Therefore k = 0 and thus p̄ = β2 and q = β2 + 2. And also ¯̄p = q − p̄ = 2,
which implies q − β2 ¯̄p = 2− β2 ≤ 0, a contradiction to q − β2 ¯̄p > 1.

Second, we assume that r = 2p̄ = kq − β2 ¯̄p. Then (2 − β2)p̄ = (k − β2)q.
Suppose β2 6= 2. Then β2 − 2 = lq for some positive integer l and thus β2 > q,
a contradiction. Therefore β2 = 2 and k = β2 = 2, and thus r = 2p̄. Also
p = q + p̄ and q = p̄ + ¯̄p. This gives the solution (VI) in Table 1 by letting
q̄ = ¯̄p.

Subcase (2): r = p− 2p̄ = kq±β2 ¯̄p. Then (−1±β2)p̄ = (k±β2− 1)q. Thus
β2 = lq ± 1 for some positive integer l. This is a contradiction to q − β2 ¯̄p > 1.

Subcase (3): r = p + 2p̄ = kq ± β2 ¯̄p. Assume that r = p + 2p̄ = kq + β2 ¯̄p.
Then (3 +β2)p̄ = (k+β2−1)q and k = 0, 1, or 2. This implies that 3 +β2 = lq
and k+ β2 − 1 = lp̄ for some positive integer l. Since q − β2 ¯̄p > 1, l = 1. Thus
q = β2+3 and p̄ = k+β2−1 = q+k−4, which implies that ¯̄p = q−p̄ = 4−k ≥ 2
because k ≤ 2. Then q − β2 ¯̄p ≤ q − 2β2 ≤ 1, a contradiction to q − β2 ¯̄p > 1.

We now assume that r = p+ 2p̄ = kq− β2 ¯̄p. Then (3− β2)p̄ = (k− β2− 1)q
and k = 1, 2, or 3. If β2 = 2, then p̄ = (k−3)q, a contradiction. If β2 = 3, then
k = β2 + 1 = 4, a contradiction. If β2 > 3, then β2 − 3 = lq for some positive
integer l. Then β2 = lq + 3 > q, a contradiction.

Subcase (4): r = 2p − 2p̄ = kq ± β2 ¯̄p. Then ±β2p̄ = (k ± β2 − 2)q. This
implies β2 ≥ q, a contradiction. �

4. Twisted torus knots admitting graph manifold Dehn surgeries

Section 3 shows that there are six types of middle/middle twisted torus
knots. By Lemma 2.1 in [3] it follows that for a twisted torus knot, the γ-Dehn
surgery K(γ) with γ a surface slope is homeomorphic to H[K]∪∂H ′[K]. There-
fore middle/middle twisted torus knots admit either a Dehn surgery producing
either S2(a, b, c, d) or a graph manifold whose decomposing pieces consist of
two Seifert-fibered manifold over the disk with two exceptional fibers. In this
section, we show that all of the six types admit the latter. The main tool to
verify this is to use R-R diagrams and the key idea is to show using R-R dia-
grams that two regular fibers of H[K] and H ′[K] intersect transversally in at
least one point.
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Figure 5. R-R diagram of K(p, q, r,m, n) with respect to H
and H ′, where as + bt + cu = p, as′ + bt′ + cu′ = q, and
a+ b+ c = r.

R-R diagrams were originally introduced by Osborne and Stevens in [7], and
developed by Berge. R-R diagrams are a type of planar diagram related to
Heegaard diagrams of simple closed curves in the boundary of a genus two
handlebody and in particular useful for describing embeddings of simple closed
curves in the boundary of a handlebody so that the embedded curves represent
certain conjugacy classes in the fundamental group of the handlebody. For the
definition and properties of R-R diagrams, see [1] or [5]. The R-R diagram of a
twisted torus knot K(p, q, r,m, n) is shown in Figure 5. The details of how to
make the R-R diagram of a twisted torus knot K(p, q, r,m, n) are given in [5].

The following lemma and the remarks were given in [5]. However since they
are essential in this paper, we describe here as well.

Lemma 4.1. If k is a nonseparating simple closed curve on the boundary of
a genus two handlebody H such that H[k] is Seifert-fibered over D2 with two
exceptional fibers, then k has an R-R diagram with the form of Figure 6a, with
n, s > 1, or 6b with n > 0, s > 1, a, b > 0, and gcd(a, b) = 1.

Conversely, if k has an R-R diagram with the form of Figure 6a, with n, s >
1, or Figure 6b with n > 0, s > 1, a, b > 0, and gcd(a, b) = 1, then H[k] is
Seifert-fibered over D2 with two exceptional fibers of indexes n and s, or indexes
n(a+ b) + b and s respectively.

In addition, the curves τ1 and τ2 in Figure 6a and the curve τ in Figure 6b
are regular fibers of H[k].

Proof. This is Theorem 3.2 in [2]. �

Remarks. (1) Algebraically in π1(H) = 〈x, y 〉 k in Figure 6a represents xnys,
while k in Figure 6b is the product of xnys and xn+1ys with |xnys| = a and
|xn+1ys| = b. Here |xnys| denotes the total number of appearances of xnys in
the word of k in π1(H), etc.



286 SUNGMO KANG

Figure 6. Two types of R-R diagrams of a Seifert curve k
with n, s > 1 in Figure 6a, and n > 0, s > 1, a, b > 1, and
gcd(a, b) = 1 in Figure 6b, and regular fibers τ, τ1, and τ2 of
H[k].

(2) Algebraically the regular fibers τ1 and τ2 in Figure 6a of H[k] represent
xn and ys respectively, while the regular fiber τ in Figure 6b represents ys

in π1(H) with n, s > 1. In other words, the regular fibers correspond to the
generator in k which has only one exponent.

(3) If a curve disjoint from k in Figure 6a represents xn (ys, resp.), then this
curve is isotopic to the curve τ1 (τ2, resp.) and thus can be a regular fiber of
H[k]. Similarly if a curve disjoint from k in Figure 6b represents ys, then this
curve is isotopic to the curve τ2 and thus can be a regular fiber of H[k].

Making use of R-R diagrams of a twisted torus knot K = K(p, q, r,m, n)
which allows one to compute K in π1(H) and π1(H ′), and applying Lemma 4.1
and the remarks above, we are able to find regular fibers of H[K] and H ′[K]
for all the types of middle/middle twisted torus knots in Table 1.

Lemma 4.2. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a
genus two Heegaard surface Σ of S3 such that K is of type I in Table 1,
i.e., (p, q, r,m, n) = (βq + p̄, q, βq + 2p̄, 1, 1) with 1 < p̄ < q, |q − 2p̄| > 1,
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Figure 7. A torus knot T (p, q) and the disk D1 containing r
parallel arcs of T (p, q), where p = βq + p̄ and r = βq + 2p̄.

Figure 8. R-R diagram of K.

and β > 1. Then for the surface slope γ, K(γ) is a non-Seifert-fibered graph
manifold consisting of D2(β, p̄) and D2(2, |q − 2p̄|).

Proof. Theorem 3.1 says that for the type I, H[K] = D2(β, p̄) and H ′[K] =
D2(2, |q − 2p̄|). By Lemma 2.1 in [3] K(γ) ∼= H[K] ∪∂ H ′[K]. Therefore in
order to prove this lemma, it suffices to figure out how regular fibers of H[K]
and H ′[K] lie in Σ.

Recall the solid torus V1 and the disk D1 to construct a twisted torus knot
in Section 2. Figure 7 shows a torus knot T (p, q) and the disk D1 containing
r parallel arcs of T (p, q) in V1, where p = βq + p̄ and r = βq + 2p̄. It follows
by figuring out nonparallel bands of connections in the once-punctured torus
∂V1 −D1 that K has an R-R diagram of the form shown in Figure 8. As a
special case, Figure 9 illustrates the R-R diagram of K when β = 3, which will
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Figure 9. R-R diagram of K when β = 3.

be used later to find algebraic expressions of K in π1(H) and π1(H ′) as well as
to depict regular fibers of H[K] and H ′[K].

We record the curve K algebraically by starting the p̄ parallel arcs entering
into the (0, 1)-connection in the (X,X ′)-handle. In other words, in Figure 8, we
read off a word of K from the point A lying on p̄ parallel edges entering into the
(0, 1)-connection in the (X,X ′)-handle. Let q = ap̄+b, where a > 0, 0 < b < p̄.

First we record K with respect to H, where π1(H) = 〈x, y 〉. The p̄ parallel
edges trace out

x0y(xy)β(xy(xy)β−1)a−1 · · ·
and then they split into two subsets of parallel edges, one of which has p̄ − b
parallel edges and the other has b parallel edges. The p̄− b parallel edges trace
out xy while the b parallel edges trace out xy(xy)β−1xy before they come back
to the starting point A. To make sure, one can use Figure 9 when β = 3.
Therefore it follows that K is the product of two subwords

x0y(xy)β(xy(xy)β−1)a−1xy = xy2(xy)βa and

x0y(xy)β(xy(xy)β−1)a−1xy(xy)β−1xy = xy2(xy)β(a+1)

with |xy2(xy)βa| = p̄− b and |xy2(xy)β(a+1)| = b.
We perform a change of cutting disks of the handlebody H underlying the

R-R diagram, which induces an automorphism of π1(H) that takes x 7→ xy−1

and leaves y fixed. Then by this change of cutting disks, xy2(xy)βa and
xy2(xy)β(a+1) are sent to yxβa+1 and yxβ(a+1)+1 respectively. We perform
another change of cutting disks of H inducing an automorphism y 7→ yx−βa−1

to send yxβa+1 and yxβ(a+1)+1 to y and yxβ respectively. Then only β appears
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Figure 10. The regular fibers τ and τ ′ of H[K] and H ′[K]
respectively when β = 3, where the curve τ ′ is obtained from
τ by twisting β + 3 times about τ0.

in the exponent of x. From Lemma 4.1 and the remarks below Lemma 4.1, it
follows that a curve representing xβ is a regular fiber of H[K]. This can also
be guaranteed from Theorem 3.1 and Table 2 showing that H[K] = D2(β, p̄)
so that β is the index of one of the two exceptional fibers.

Consider the curve τ , which is the dotted line, in the original R-R diagram
of K shown in Figure 10 when β = 3. τ is disjoint from K and represents

x0y(xy)β−1xyx0y−1 = (xy)β

in π1(H), which is sent to xβ after performing the two automorphisms x 7→
xy−1 and y 7→ yx−βa−1 consecutively as performed to K. Therefore by the
remark (3) below Lemma 4.1, τ is a regular fiber of H[K].

Similarly, if we record K with respect to H ′, where π1(H ′) = 〈x′, y′ 〉, then
K is the product of two subwords

x′y′(x′0y′)β(x′y′(x′0y′)β−1)a−1x′0y′ = x′y′β+1(x′y′β)a−1y′ and

x′y′(x′0y′)β(x′y′(x′0y′)β−1)a−1x′y′(x′0y′)β−1x′0y′ = x′y′β+1(x′y′β)ay′

with |x′y′β+1(x′y′β)a−1y′| = p̄ − b and |x′y′β+1(x′y′β)ay′| = b. After perform-
ing two automorphisms x′ 7→ x′y′−β and y′ 7→ x′−1y′ consecutively, then the
two subwords x′y′β+1(x′y′β)a−1y′ and x′y′β+1(x′y′β)ay′ are sent to y′2x′a−2

and y′2x′a−1. Therefore a curve representing y′2 is a regular fiber of H ′[K].
Consider the curve τ ′ which is a simple closed curve on the surface Σ obtained
from the curve τ by twisting β + 3 times about the oriented curve τ0 in the
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Figure 11. A torus knot T (p, q) and the disk D1 containing
r parallel arcs of T (p, q), where p = (α + 1)p̄ + q̄, q = αp̄ + q̄,
and r = βp̄.

original R-R diagram of K. Figure 10 illustrates τ ′ when β = 3. Note τ ′ is
disjoint from K. Also τ ′ represents x′y′β+1x′y′β+1 in π1(H ′), which is sent to
y′2 after performing x′ 7→ x′y′−β and y′ 7→ x′−1y′ consecutively as performed
to K. Therefore by the remark (3) below Lemma 4.1, τ ′ is a regular fiber of
H ′[K].

We conclude from Figure 10 that the two regular fibers τ and τ ′ of H[K] and
H ′[K] respectively intersect transversely β+3 times, which implies that K(γ) ∼=
H[K] ∪∂ H ′[K] is a non-Seifert-fibered graph manifold consisting of D2(β, p̄)
and D2(2, |q − 2p̄|), where γ is a surface slope. K(γ) may be a Seifert-fibered
space over the projective plane. However, this case happens only when either
D2(β, p̄) or D2(2, |q−2p̄|) is D2(2, 2) which admits another Seifert fibering. �

Lemma 4.3. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard surface Σ of S3 such that K is of type II in Table 1, i.e.,
(p, q, r,m, n) = ((α + 1)p̄ + q̄, αp̄ + q̄, βp̄, 1, 1) with 0 ≤ q̄ < p̄ and 1 < β ≤ α.
Then for the surface slope γ, K(γ) is a non-Seifert-fibered graph manifold con-
sisting of D2(β, (α− β + 1)p̄+ q̄) and D2(β, (α− β)p̄+ q̄).

Proof. Figure 11 shows a torus knot T (p, q) and the disk D1 containing r = βp̄
parallel arcs of T (p, q) in V1. Figure 12 shows an R-R diagram of K, where
s = α− β + 1, t = α− β + 2, u = α− β + 3.

We first handle with respect to H. We assume that q̄ = 0. Since gcd(p̄, q̄) =
1, p̄ = 1. Then it is easy to see from the R-R diagram of K that K represents
algebraically

xα−β+2y(xy)β−1,



TWISTED TORUS KNOTS WITH GRAPH MANIFOLD DEHN SURGERIES 291

Figure 12. R-R diagram of K. Here s = α − β + 1, t =
α− β + 2, u = α− β + 3.

which can be sent to xα−β+1yβ under an automorphism y 7→ x−1y. Therefore
a curve representing xα−β+1 or yβ is a regular fiber of H[K]. We take yβ as a
regular fiber of H[K].

We now assume that q̄ > 0. Let p̄ = aq̄ + b, where a > 0, 0 ≤ b < a. We
record the curve K algebraically by starting the q̄ parallel arcs entering into
the (u, t)-connection in the (X,X ′)-handle. The q̄ parallel edges trace out

xα−β+3(yx)β−1(yxα−β+2(yx)β−1)a−1 · · ·

and then they split into two subsets of parallel edges, one of which has q̄ − b
parallel edges and the other has b parallel edges. The q̄− b parallel edges trace
out y while the b parallel edges trace out yxα−β+2(yx)β−1y before they come
back to the starting point. This implies that K is the product of two subwords

xα−β+3(yx)β−1(yxα−β+2(yx)β−1)a−1y and

xα−β+3(yx)β−1(yxα−β+2(yx)β−1)ay

with

|xα−β+3(yx)β−1(yxα−β+2(yx)β−1)a−1y| = q̄ − b and

|xα−β+3(yx)β−1(yxα−β+2(yx)β−1)ay| = b.

By performing an automorphism of π1(H) that takes y 7→ yx−1, they are
carried into xα−β+2yβ(xα−β+1yβ)a−1 and xα−β+2yβ(xα−β+1yβ)a respectively.
Thus only β appears in the exponent of y and a curve representing yβ is a
regular fiber of H[K].

We have shown that a curve representing yβ can be taken as a regular fiber
of H[K] in both cases that q̄ = 0 and q̄ > 0. Consider the curve τ in the
original R-R diagram of K shown in Figure 13, where β = 4. τ is disjoint
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Figure 13. The regular fibers τ and τ ′ of H[K] and H ′[K]
respectively when β = 4, where the curve τ ′ is obtained from
τ by twisting once about τ0.

from K and represents (xy)β in π1(H), which is sent to yβ after performing
the automorphism y 7→ yx−1. Therefore τ is a regular fiber of H[K].

For a regular fiber ofH ′[K], if we recordK with respect toH ′, only difference
from H happens in the exponents of x and x′. In other words, we can get K
with respect to H ′ by replacing α − β + 3, α − β + 2 by α − β + 2, α − β + 1
respectively in K with respect to H. Therefore applying the same argument
as in H we see that a curve representing (x′y′)β in the original R-R diagram
of K is a regular fiber of H ′[K]. Consider the curve τ ′ which is a simple closed
curve on the surface Σ obtained from the curve τ by twisting once about the
oriented curve τ0 in the original R-R diagram of K. Figure 13 illustrates τ and
τ0 when β = 4. By Figure 13, τ ′ represents (x′y′)β , whence τ ′ is a regular fiber
of H ′[K].

Since the two regular fibers τ and τ ′ intersect transversely once, K(γ) is a
non-Seifert-fibered graph manifold consisting of D2(β, (α − β + 1)p̄ + q̄) and
D2(β, (α−β)p̄+ q̄), where γ is a surface slope. As in Lemma 4.2 K(γ) may be
a Seifert-fibered space over the projective plane. �

Lemma 4.4. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard surface Σ of S3 such that K is of type III in Table 1, i.e.,
(p, q, r,m, n) = ((α + 1)p̄ + q̄, αp̄ + q̄, (α − β)p̄ + q̄, 1, 1) with 0 < q̄ < p̄ and
1 < β ≤ α. Then for the surface slope γ, K(γ) is a non-Seifert-fibered graph
manifold consisting of D2(β + 1, (α− β)p̄+ q̄) and D2(β, (α− β)p̄+ q̄).

Proof. Figure 14 shows a torus knot T (p, q) and the disk D1 containing r =
(α− β)p̄+ q̄ parallel arcs of T (p, q) in V1. Figure 15 shows R-R diagrams of K
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Figure 14. A torus knot T (p, q) and the disk D1 containing
r parallel arcs of T (p, q), where p = (α + 1)p̄ + q̄, q = αp̄ + q̄,
and r = (α− β)p̄+ q̄.

Figure 15. R-R diagrams of K when a) α > β and b) α = β,
where (s, t) = ((a + 1)(β + 1) + 1, (a + 1)β + 1) and (t, u) =
(a(β + 1) + 1, aβ + 1).

when α > β and α = β. In Figure 15b, (s, t) = ((a+ 1)(β+ 1) + 1, (a+ 1)β+ 1)
and (t, u) = (a(β + 1) + 1, aβ + 1), where p̄ = aq̄ + b with a > 0, 0 ≤ b < q̄.
Note that the two R-R diagrams have the same form. Therefore finding regular
fibers when α = β can be achieved in the same manner as when α > β.

Assume that α > β. By starting the p̄ parallel arcs entering into the (β +
2, β + 1)-connection in the (X,X ′)-handle, we observe that with respect to H,
K is the product of two subwords

xβ+2(yx)α−β−1y and xβ+2(yx)α−β−1yxy

with |xβ+2(yx)α−β−1y| = p̄− q̄ and |xβ+2(yx)α−β−1yxy| = q̄.
By performing an automorphism y 7→ yx−1, they are carried into xβ+1yα−β

and xβ+1yα−β+1 respectively. Thus only β + 1 appears in the exponent of x
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Figure 16. The regular fibers τ and τ ′ of H[K] and H ′[K]
respectively, where the curve τ ′ is obtained from τ by twisting
once about τ0.

and a curve representing xβ+1 is a regular fiber of H[K]. The curve τ in the
original R-R diagram of K shown in Figure 16 represents xβ+1 in π1(H), which
is sent to xβ+1 after performing the automorphism y 7→ yx−1. Therefore τ is
a regular fiber of H[K].

For a regular fiber of H ′[K], we apply the similar argument to see that a
curve representing x′β is a regular fiber of H ′[K] and a simple closed curve τ ′

represents x′β , where τ ′ is a simple closed curve obtained from the curve τ by
twisting once about τ0 in Figure 16.

Since the two regular fibers τ and τ ′ intersect transversely once, K(γ) is a
non-Seifert-fibered graph manifold consisting of D2(β + 1, (α − β)p̄ + q̄) and
D2(β, (α−β)p̄+ q̄), where γ is a surface slope. As in Lemma 4.2 K(γ) may be
a Seifert-fibered space over the projective plane. �

Lemma 4.5. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard surface Σ of S3 such that K is of type IV in Table 1, i.e.,
(p, q, r,m, n) = ((α + 1)p̄ + q̄, αp̄ + q̄, (α + β + 1)p̄ + q̄, 1, 1) with 0 ≤ q̄ < p̄
and 1 < β < α. Then for the surface slope γ, K(γ) is a non-Seifert-fibered
graph manifold consisting of D2(β, (α−β+1)p̄+q̄) and D2(β+1, (α−β−1)p̄+q̄).

Proof. A torus knot T (p, q) and the disk D1 containing r = (α + β + 1)p̄ + q̄
parallel arcs of T (p, q) in V1 are illustrated in Figure 17. The corresponding
R-R diagram of K is depicted in Figure 18.

We start the p̄ parallel arcs which are innermost in the βp̄ parallel arcs
entering into the (0, 1)-connection in the (X,X ′)-handle. Then it follows that
for H, K is the product of two subwords

x0yxy(xy)α−βxy(x0yxy)β−1 = (xy)α−β+1(xy2)β and
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Figure 17. A torus knot T (p, q) and the disk D1 containing
r parallel arcs of T (p, q), where p = (α + 1)p̄ + q̄, q = αp̄ + q̄,
and r = (α+ β + 1)p̄+ q̄.

Figure 18. R-R diagram of K.

x0yxy(xy)α−βxyxy(x0yxy)β−1 = (xy)α−β+2(xy2)β

with |(xy)α−β+1(xy2)β | = p̄ − q̄ and |(xy)α−β+2(xy2)β | = q̄. This can be
confirmed from Figure 19, which shows the R-R diagram of K when β = 2.

After applying two automorphisms y 7→ x−1y and x−1 7→ x−1y−2 consecu-
tively, they are sent to yα−β+1x−β and yα−β+2x−β respectively. Therefore a
curve representing x−β is a regular fiber of H[K]. The curve τ in the original
R-R diagram of K shown in Figure 20, where β = 2, represents (x0yxy)β in
π1(H), which is sent to x−β after performing y 7→ x−1y and x−1 7→ x−1y−2

consecutively as performed to K. Thus τ is a regular fiber of H[K].
Similarly, for H ′ K is the product of two subwords
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Figure 19. R-R diagram of K when β = 2.

Figure 20. The regular fibers τ and τ ′ of H[K] and H ′[K]
respectively when β = 2, where the curve τ ′ is obtained from
τ by twisting three times about τ0.

x′y′x′0y′(x′y′)α−βx′0y′(x′y′x′0y′)β−1 = (x′y′)α−β−1(x′y′2)β+1 and

x′y′x′0y′(x′y′)α−βx′y′x′0y′(x′y′x′0y′)β−1 = (x′y′)α−β(x′y′2)β+1

with |(x′y′)α−β−1(x′y′2)β+1| = p̄− q̄ and |(x′y′)α−β(x′y′2)β+1| = q̄.
By performing automorphisms y′ 7→ x′−1y′ and x′−1 7→ x′−1y′−2, it follows

that a curve representing x′−β−1 is a regular fiber of H ′[K]. Let τ ′ be a simple
closed curve obtained from the curve τ by twisting three times about τ0 in
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Figure 21. A torus knot T (p, q) and the disk D1 containing
r parallel arcs of T (p, q), where p = (α + 1)p̄ + q̄, q = αp̄ + q̄,
and r = (2α− β)p̄+ 2q̄.

Figure 20, where β = 2. Then τ ′ represents x′−β−1, whence it is a regular fiber
of H ′[K].

Since the two regular fibers τ and τ ′ intersect transversely three times, K(γ)
is a non-Seifert-fibered graph manifold consisting of D2(β, (α − β + 1)p̄ + q̄)
and D2(β + 1, (α− β − 1)p̄+ q̄), where γ is a surface slope. As in Lemma 4.2
K(γ) may be a Seifert-fibered space over the projective plane. �

Lemma 4.6. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard surface Σ of S3 such that K is of type V in Table 1, i.e.,
(p, q, r,m, n) = ((α + 1)p̄ + q̄, αp̄ + q̄, (2α − β)p̄ + 2q̄, 1, 1) with 0 < q̄ < p̄
and 1 < β < α. Then for the surface slope γ, K(γ) is a non-Seifert-fibered
graph manifold consisting of D2(β+2, (α−β−1)p̄+ q̄) and D2(β, (α−β)p̄+ q̄).

Proof. Figures 21 and 22 show a torus knot T (p, q) and the disk D1 containing
r = (2α − β)p̄ + 2q̄ parallel arcs of T (p, q) in V1 and its corresponding R-R
diagram of K respectively.

As did in Type IV, we start the p̄ parallel arcs which are innermost in the
(β + 1)p̄ parallel arcs entering into the (1, 1)-connection in the (X,X ′)-handle.
Then for H, K is the product of two subwords

xyxy(x0yxy)α−β−1(xy)β = (xy2)α−β−1(xy)β+2 and

xyxy(x0yxy)α−β−1x0yxy(xy)β = (xy2)α−β(xy)β+2

with |(xy2)α−β−1(xy)β+2| = p̄− q̄ and |(xy2)α−β(xy)β+2| = q̄.
For H ′, K is the product of two subwords

x′y′x′0y′(x′y′x′0y′)α−β−1(x′y′)β = (x′y′2)α−β(x′y′)β and
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Figure 22. R-R diagram of K.

Figure 23. The regular fibers τ and τ ′ of H[K] and H ′[K]
respectively when β = 2, where the curve τ ′ is obtained from
τ by twisting three times about τ0.

x′y′x′0y′(x′y′x′0y′)α−β−1x′y′x′0y′(x′y′)β = (x′y′2)α−β+1(x′y′)β

with |(x′y′2)α−β(x′y′)β | = p̄− q̄ and |(x′y′2)α−β+1(x′y′)β | = q̄.
Observe that K in this type has the same algebraic expression with respect

to H and H ′ as in the type IV. Applying the same argument, we see that the
regular fibers of H[K] and H ′[K] can be depicted as τ and τ ′ respectively in
Figure 23 which intersect three times, where τ ′ is a simple closed curve obtained
from the curve τ by twisting three times about τ0. This implies that the Dehn
surgery at a surface slope is a non-Seifert-fibered graph manifold consisting of
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Figure 24. A torus knot T (p, q) and the disk D1 containing
r parallel arcs of T (p, q), where p = 2p̄ + q̄, q = p̄ + q̄, and
r = 2p̄.

Figure 25. R-R diagram of K.

D2(β + 2, (α − β − 1)p̄ + q̄) and D2(β, (α − β)p̄ + q̄). As in Lemma 4.2 K(γ)
may be a Seifert-fibered space over the projective plane. �

Lemma 4.7. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard surface Σ of S3 such that K is of type VI in Table 1, i.e.,
(p, q, r,m, n) = (2p̄ + q̄, p̄ + q̄, 2p̄, 1, 1) with 0 < q̄ < p̄. Then for the surface
slope γ, K(γ) is a non-Seifert-fibered graph manifold consisting of D2(2, q̄) and
D2(2, p̄− q̄).

Proof. Figures 24 and 25 show a torus knot T (p, q) and the disk D1 containing
r = 2p̄ parallel arcs of T (p, q) in V1 and its corresponding R-R diagram of K
respectively.
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Figure 26. The regular fibers τ and τ ′ of H[K] and H ′[K]
respectively, where the curve τ ′ is obtained from τ by twisting
once about τ0.

Let p̄ = aq̄ + b, where a > 0, 0 < b < q̄. By starting the q̄ parallel arcs
entering into the (2, 1)-connection in the (X,X ′)-handle, we see that for H, K
is the product of two subwords

x2y(xyxy)a−1xy = x2y(xy)2a−1 and x2y(xyxy)axy = x2y(xy)2a+1

with |x2y(xy)2a−1| = q̄ − b and |x2y(xy)2a+1| = b.
After performing two automorphisms y 7→ x−1y and x 7→ xy−2a consecu-

tively, they are sent to x and xy2 respectively. Therefore a curve representing
y2 is a regular fiber of H[K]. The curve τ in the original R-R diagram of K
as shown in Figure 26 represents (xyxy)2 in π1(H), which is sent to y2 after
performing y 7→ x−1y and x 7→ xy−2a consecutively as performed to K. Thus
τ is a regular fiber of H[K].

For H ′, K is the product of two subwords

x′y′(x′y′x′0y′)a−1x′y′ = (x′y′)2(x′y′2)a−1 and

x′y′(x′y′x′0y′)ax′y′ = (x′y′)2(x′y′2)a

with |(x′y′)2(x′y′2)a−1| = q̄ − b and |(x′y′)2(x′y′2)a| = b.
After performing two automorphisms y′ 7→ x′−1y′ and x′−1 7→ x′−1y′−2

consecutively, they are sent to x′−a+1y′2 and x′−ay′2 respectively. Therefore a
curve representing y′2 is a regular fiber of H ′[K]. Consider the curve τ ′ which
is a simple closed curve obtained from the curve τ by twisting once about τ0 in
Figure 26. The curve τ ′ represents (x′y′x′y′)2 in π1(H ′), which is sent to y′2

after y′ 7→ x′−1y′ and x′−1 7→ x′−1y′−2 consecutively as performed to K. Thus
τ ′ is a regular fiber of H ′[K].
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From Figure 26 it follows that the two regular fibers τ and τ ′ intersect
once, whence the Dehn surgery at a surface slope is a non-Seifert-fibered graph
manifold consisting of D2(2, q̄) and D2(2, p̄− q̄). As in Lemma 4.2 K(γ) may
be a Seifert-fibered space over the projective plane. �

By Lemmas 4.2 ∼ 4.7 we obtain the main theorem of this paper combining
with Theorem 3.1 as follows, which provides another infinite family of knots in
S3 admitting Dehn surgery yielding graph manifolds as done in [5].

Theorem 4.8. All the middle/middle twisted torus knots possibly except a
few in Theorem 3.1 admit Dehn surgeries producing non-Seifert-fibered graph
manifolds.
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