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SEMI-ASYMPTOTIC NON-EXPANSIVE ACTIONS OF

SEMI-TOPOLOGICAL SEMIGROUPS

Massoud Amini, Alireza Medghalchi, and Fouad Naderi

Abstract. In this paper we extend Takahashi’s fixed point theorem on
discrete semigroups to general semi-topological semigroups. Next we de-
fine the semi-asymptotic non-expansive action of semi-topological semi-
groups to give a partial affirmative answer to an open problem raised by
A.T-M. Lau.

1. Introduction

A (not necessarily linear) self-mapping T : E → E on a Banach space E
is called non-expansive if ‖T (x) − T (y)‖ ≤ ‖x − y‖ for all x, y ∈ E. In 1963
R. DeMarr proved the following common fixed point theorem for commuting
families of non-expansive self-mappings [6].

Theorem 1.1. For any non-empty compact convex subset K of a Banach space

E each commuting family of non-expansive self mappings on K has a common

fixed point in K.

This generalizes the celebrated Markov-Kakutani fixed point theorem (for
the case of Banach spaces) on commuting families of continuous linear trans-
formations on Hausdorff topological vector spaces leaving certain nonempty
compact convex subset invariant. DeMarr’s theorem has been generalized in
several directions by Belluce and Kirk [2, 3], Takahashi [16], Mitchell [14], Lau
and Holmes [7, 8].

DeMarr theorem suggests that the action of certain commutative semigroup
has a fixed point. It is then natural to seek the same type of fixed point property
for the actions of more general semigroups.

Let S be a semi-topological semigroup, that is a semigroup with a Hausdorff
topology with separately continuous multiplication. We say that S is right

reversible if it has finite intersection property for closed left ideals. An action
of S on a topological space E is a mapping (s, x) 7→ s(x) from S × E into
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E such that (st)(x) = s(t(x)) for s, t ∈ S, x ∈ E. Every action of S on E
induces a representation of S as a semigroup S of mappings on E, and the two
semigroups are usually identified. The action is separately continuous if it is
continuous in each variable when the other is fixed. In this case, each member
of S is continuous on E. When E is a normed space the action of S on E is
called non-expansive if ‖s(x)−s(y)‖ ≤ ‖x−y‖ for s ∈ S and x, y ∈ E and right

asymptotically non-expansive if for each x, y ∈ E there is a left ideal J ⊆ S
such that ‖s(x)− s(y)‖ ≤ ‖x− y‖ for s ∈ J [9]. The left and two sided versions
of the above notions are defined similarly.

Let l∞(S) be the C∗-algebra of all bounded complex-valued functions on
S with supremum norm and point-wise multiplication. For each s ∈ S and
f ∈ l∞(S), denote by ls(f) and rs(f) the left and right translates of f by s
respectively, that is lsf(t) = f(st) and rsf(t) = f(ts) for t ∈ S. Let X be a
closed subspace of l∞(S) containing the constant functions and being invariant
under translations. Then a linear functional m ∈ X∗ is called a mean if ‖m‖ =
m(1) = 1, and a left invariant mean (LIM) if moreover m(ls(f)) = m(f) for
s ∈ S, f ∈ X . Let Cb(S) be the space of all bounded continuous complex-
valued functions on S with supremum norm and LUC(S) be the space of left
uniformly continuous functions on S, i.e., all functions f ∈ Cb(S) for which
the mapping s → lsf : S → Cb(S) is continuous when Cb(S) has the sup-
norm topology. Then LUC(S) is a C∗-subalgebra of Cb(S) invariant under
translations and containing constant functions. Then S is called left amenable

if LUC(S) has a LIM. The space of all right uniformly continuous functions,
RUC(S), and right amenability are defined similarly. The semi-topological
semigroup S is called amenable if there is a mean on Cb(S) which is both left
and right invariant. For a discrete semigroup S this amounts to saying that
S is amenable if it is both left and right amenable [5]. Left amenable semi-
topological semigroups include commutative semigroups, as well as compact
and solvable groups. The free (semi)group on two or more generators is not
left amenable. When S is discrete, LUC(S) = l∞(S) and (left) amenability of
S yields the (left) reversibility of S. For more details on amenability, examples
and relations see [4], [5], [11], [12], [13], [15].

Takahashi [16] studied DeMarr’s theorem and realized that one can use
a commutative (discrete) semigroup of self-mappings instead of a commut-
ing family of self-mappings. On the other hand every commutative (discrete)
semigroup is amenable, so he could generalize DeMarr theorem for amenable
discrete semigroups:

Theorem 1.2. Let K be a non-empty, compact, convex subset of a Banach

space E and S be an amenable discrete semigroup which acts on K separately

continuous and non-expansive, then S has a common fixed point in K.

Mitchell [14] noticed that every left amenable discrete semigroup is left re-
versible, so he generalized Takahashi’s theorem:
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Theorem 1.3. Let K be a non-empty, compact, convex subset of a Banach

space E and S be a left reversible discrete semigroup which acts on K separately

continuous and non-expansive, then S has a common fixed point in K.

In order to generalize DeMarr’s, Takahashi’s, Mitchell’s fixed point theorems
in their utmost generality, Lau and Holmes defined the property (B) for the
action of a semi-topologicals semigroup S on E as follows, which is automatic
when S is commutative and the action is separately continuous.

(B) For each x ∈ E whenever a net {sα(x) : α ∈ I}, sα ∈ S, converges to x
then for each a ∈ S the net {sαa(x) : α ∈ I, sα ∈ S} converges to a(x).

In [7], Lau and Holmes generalized DeMarr’s fixed point theorem as follows:

Theorem 1.4. Any right reversible semi-topological semigroup acting sepa-

rately continuous and asymptotically non-expansive on a non-empty compact

convex subset K of E with property (B) has a common fixed point in K.

In his excellent review article [11], Lau asked if right reversibility of S and
property (B) in the above theorem might be replaced by amenability of S.

This motivated the authors to seek other situations where such a fixed point
property holds. In Section 2 we extend Takahashi’s fixed point theorem on
discrete semigroups [16] to general semi-topological semigroups. Our theorem
in this section is new and is not a result of any previous works. In Section 3 we
introduce the class of semi-asymptotic non-expansive mappings (which include
non-expansive ones) and finally in Section 4 we prove a fixed point theorem for
the action of reversible discrete semigroups by semi-asymptotic non-expansive
mappings to give a partial affirmative answer to the Lau’s problem.

2. Takahashi’s theorem for general semi-topological semigroup

Takahashi proved his theorem for discrete semigroups [16], here we generalize
it for general semi-topological semigroups. First we prove an assistant lemma
then we state our theorem.

Lemma 2.1. Let M be a nonempty compact subset of a Banach space E, and S
be a semi-topological semigroup acting on M such that the action is separately

continuous and non-expansive. Then for each x ∈ M and each f ∈ C(M) we

have fx ∈ RUC(S) where fx(s) = f(sx) (s ∈ S).

Proof. We have to show that for each x ∈ M , fx ∈ Cb(S) and the mapping
s → rsfx from S into Cb(S) is continuous. Let sα → s in S then sα(x) → s(x)
and by continuity of f , fx(sα) = f(sα(x)) → f(s(x)) = fx(s) which means
that fx is continuous. Note that the range of fx is bounded, since fx(S) =
f(Sx) ⊆ f(M) and M is compact, hence fx ∈ Cb(S). Fix x ∈ M , we want
to show that the mapping s → rsfx from S into Cb(S) is continuous. Let
again sα → s in S, by separate continuity of the multiplication, tsα → ts in
S. Also sα(x) → s(x), tsα(x) → ts(x) and ‖tsα(x) − ts(x)‖ ≤ ‖sα(x) − s(x)‖
in M , because the action is separately continuous and non-expansive. Uniform
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continuity of f implies that for any ε > 0 there is δ > 0 such that if ‖u−v‖ < δ
then ‖f(u)− f(v)‖ < ε. On the other hand for δ > 0 there is an α0 such that
for any α ≥ α0, t ∈ S, we have ‖ tsα(x)− ts(x)‖ ≤ ‖sα(x)− s(x)‖ ≤ δ. Putting
these inequalities together we see that for ε > 0 there is an α0 such that for all
α ≥ α0, t ∈ S the inequality | f(tsαx) − f(tsx) |≤ ε holds, hence

‖rsα(fx)− rs(fx)‖ = sup{| f(tsαx)− f(tsx) |: t ∈ S} ≤ ε.

Therefore fx ∈ RUC(S). �

Now we use the above lemma to extend Takahashi’s theorem on discrete
semigroups [16] to general semi-topological semigroups.

Theorem 2.2. Let K be a non-empty compact convex subset of a Banach space

E, and S be an amenable semi-topological semigroup acting on K such that the

action is separately continuous and non-expansive. Then S has a common fixed

point in K.

Proof. An application of Zorn’s lemma shows that there exists a minimal non-
empty compact convex and S-invariant subset X ⊆ K. A second application
of Zorn’s lemma shows that there is a minimal non-empty compact and S-
invariant subset M ⊆ X . We claim that M is S-preserved, i.e., M = sM for
all s ∈ S. Let ν be an invariant mean on RUC(S) and define µ(f) = ν(fx).
Then by Riesz representation theorem, µ induces a regular probability measure
on M such that µ(sB) = µ(B) for all Borel S-invariant sets B ⊆ M as follows:
Since µ is invariant we have µ(s−1B) = µ(B) for all Borel sets B ⊆ M , where
s−1B denotes the pre-image of B under s. Also B ⊆ s−1sB, hence for every
Borel S-invariant set B, µ(B) ≤ µ(s−1sB) = µ(sB) ≤ µ(B), and therefore
µ(sB) = µ(B). Take F to be the support of µ, then F ⊆ sM for each s ∈ S,
since s defines a measurable function from M into M and µ(sM) = µ(M) = 1.
Let χF be the characteristic function of F . For each s ∈ S,

1 = µ(F ) =

∫

M

χF (y)dµ =

∫

M

χF (sy)dµ = µ(s−1F ),

and so by the definition of support, F ⊆ s−1F , for each s in S, hence F is
S-invariant. Now the minimality of M yields F = M , and µ(sM) = µ(M) = 1
implies that M ⊆ sM , but M was S-invariant so sM = M for each s in S.

Now if M is singleton we are done, otherwise if δ(M) = diam(M) > 0, we
get a contradiction by DeMarr’s Lemma [6], which implies that

∃u ∈ co(M), r0 = sup{‖m− u‖ : m ∈ M} < δ(M).

Define X0 =
⋂

m∈M B[m, r0], and note that X0 is non-empty (as u ∈ X0)
compact and convex such that sX0 ⊆ X0, for each s in S. But this contradicts
the minimality of X . Therefor M contains only one point which is a common
fixed point for the action of S. �

This implies a result of Takahashi [16]:
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Corollary 2.3. Let K be a non-empty, compact, convex subset of a Banach

space E, and S be an amenable discrete semigroup acting on K such that the

action is separately continuous and non-expansive. Then S has a common fixed

point in K.

In Section 4 we will see that Takahashi’s theorem can be deduced from
another theorem (see Corollary 4.3).

3. Semi-asymptotic non-expansive action of semi-topological

semigroups

Definition 3.1. The action of a semigroup S on a normed space E is left
semi-asymptotic non-expansive if for each x ∈ E there is a left ideal J ⊆ S
such that ‖s(x) − s(y)‖ ≤ ‖x − y‖ for s ∈ J , y ∈ E. Right and two sided
semi-asymptotic non-expansive actions are defined similarly.

Remark 3.2. (i) The following implications hold for the action of a (right re-
versible) semigroup S on E:

non-expansive → left semi-asymptotic non-expansive,
left semi-asymptotic non-expansive → right asymptotic non-expansive.

Care is needed in the expressions “left semi-asymptotic non-expansive” and
“left asymptotic non-expansive” because we have used different ideals in their
definitions.

(ii) Recall that S is right reversible if S has finite intersection property
for closed left ideals. This is clearly equivalent to the assumption that any
two principal closed left ideals meet: Because any left ideal contains a left
principal ideal and given principal left ideals Sa, Sb, Sc, choose d ∈ Sa

⋂
Sb,

then Sd ⊆ Sa
⋂
Sb and since Sd

⋂
Sc 6= ∅, we have Sa

⋂
Sb

⋂
Sc 6= ∅. The

same holds for any finite number of principal closed left ideals by an easy
induction.

The converses of implications in (i) do not hold even for discrete semigroups.

Example 3.3. (i) property (B) +asymptotic non-expansive 6⇒ semi-asymptotic

non-expansive: Let K = {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ < 2π} be the closed unit
disc in R

2 in polar coordinates. Define continuous self mappings f , g on K by
f(r, θ) = ( r2 , θ) and g(r, θ) = (r, 2θ (mod 2π)). The discrete semigroup S of
continuous mappings from K to K generated by f and g under composition is
commutative, and so has property (B). Lau has shown that this action is asymp-
totically non-expansive, but it is not non-expansive (g ruins everything!) [7].
For the sake of completeness we give the details of asymptotic non-expansivity
and then we show that the action is not even semi-asymptotic non-expansive.
Let N0 be the additive semigroup of non-negative integers {0, 1, 2, . . .} and
T be the semigroup N0 × N0 \ {(0, 0)} under pointwise addition. Then T
acts on K by (m,n)(r, θ) = fmgn(r, θ), and we can identify T with S via
(m,n) 7→ fmgn. The ideals of S are of the form I(m0,n0) = {fmgn : m ≥ m0,
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n ≥ n0, (m,n) 6= (0, 0)} for (m0, n0) ∈ T . Let us observe that the action of
S is asymptotic non-expansive. Let (r, θ), (r′, θ′) be distinct points in K, for
n ∈ N0 put un = r2 + r′2 − 2rr′ cos 2n(θ − θ′);u = r2 + r′2 − 2rr′ cos(θ − θ′)
then by Archimedean property of reals, there is m0 ∈ N0 such that 1

22m un ≤ u
for all m ≥ m0, namely

‖fmgn(r, θ)− fmgn(r′, θ′)‖2 ≤ ‖(r, θ)− (r′, θ′)‖2,

and using the left ideal J = I(m0,0), the action is asymptotically non-expansive.
To show that the action is not semi-asymptotic non-expansive, let (1, 0) ∈ K, if
I is the ideal such that ‖s(r, θ)−s(1, 0)‖ ≤ ‖(r, θ)− (1, 0)‖ for s ∈ I, (r, θ) ∈ K,
then I has the form I = I(m0,n0) for some (m0, n0), let s = fmgn ∈ I act

on (1, π
2n ) then ‖( 1

2m , π) − ( 1
2m , 0)‖ ≤ ‖(1, π

2n ) − (1, 0)‖ which in turn gives
1

22m−2 ≤ 2(1− cos( π
2n )) for m ≥ m0, n ≥ n0, (m,n) 6= (0, 0), but this leads to

a contradiction by fixing m and letting n vary indefinitely.
(ii) semi-asymptotic non-expansive 6⇒ non-expansive: We proceed by defin-

ing a map T on a set M , for which the powers T n, n ≥ 2, are non-expansive,
but T itself isn’t, and consider the corresponding action of (N,+) on M . Let
M be the closed unit ball of R

2 and f : R → [−1, 1] be continuous with
f(0) = 0 which isn’t non-expansive. Consider the self-mapping T on M , de-
fined by T (x1, x2) = (f(x2), 0), then T isn’t non-expansive but T n = 0 for
n ≥ 2. One can generalize this example to R

p with S = (p − k) + N =
{p− k + 1, p− k + 2, . . .}, k − 1 ≤ ⌊p

2⌋ = max{m ∈ Z : m ≤ p
2}, by taking f as

before and T (x1, x2, . . . , xp) = (f(x2), . . . , f(xp), 0).
(iii) semi-asymptotic non-expansive 6⇒ property (B): LetK be as in (i), define

the self mappings f and g on K by f(r, θ) = (r, π
2 + θ) and g(r, θ) = (r, π

2 − θ).
Let S be the discrete semigroup generated by f and g under composition. In
this case, S is non-commutative. The actions of f and g are non-expansive, as
f is a rotation and g is the composition of a reflection and a rotation. To be
more precise, let (r, θ), (r′, θ′) be two points in K, then ‖f(r, θ)− f(r′, θ′)‖2 =
‖(r, π

2 + θ) − (r′, π
2 + θ′)‖2 = r2 + r′2 − 2rr′ cos(π2 + θ − (π2 + θ′)) = r2 +

r′2 − 2rr′ cos(θ− θ′) ≤ ‖(r, θ)− (r′, θ′)‖2 which shows that f is non-expansive,
similar calculations show that g is also non-expansive. Therefore the action
of S is non-expansive and semi-asymptotic non-expansive, but it fails to have
property (B): Consider x = (1, π

4 ) ∈ K, sn = g, n ∈ N; a = f ∈ S, then
sn(x) = (1, π4 ) → (1, π4 ) = x, but sna(x) → (1,−π

4 ) 6= a(x).

Definition 3.4. A semi-topological semigroup S is called totally left reversible
if every family of closed right ideals of S has non-empty intersection. The right
and two sided versions are defined similarly.

Example 3.5. The commutative semigroupN of natural numbers is not totally
reversible under addition, but it is totally reversible under the min operation
m ∧ n = min{m,n}, as in the latter case 1 belongs to every ideal.
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Proposition 3.6. If a totally right reversible semi-topological semigroup act

right asymptotically non-expansive on a normed space, the action is left semi-

asymptotic non-expansive.

Proof. Let x be an arbitrary element in E. By asymptotic assumption for each
y ∈ E there is a left ideal Jx,y ⊆ S such that ‖s(x) − s(y)‖ ≤ ‖x − y‖ for
all s ∈ Jx,y. Now the left ideal Jx =

⋂
y∈E Jx,y satisfies the conditions in the

definition of left semi-asymptotic non-expansive action. �

4. Lau’s problem for discrete semigroups with

semi-asymptotic action

In this section we prove the analogue of a result of Lau and Holmes for semi-
asymptotic non-expansive actions of discrete semigroups without the property
(B), adapting the technique of the proof of [7, Theorem 3.1] and [14] to our
setting. Recall that when the semigroup S is discrete no mention of topology is
needed, in this case S is left(right) reversible if it has finite intersection property
for right(left) ideals and S is reversible if it is both left and right reversible.
Also S is left amenable if l∞(S) has a left invariant mean, right and two sided
amenability are defined similarly.

If H and K are non-empty subsets of a Banach space E and H is bounded,
for k ∈ K, define r(H, k) = sup{‖h−k‖ : h ∈ H}. Put r(H,K) = inf{r(H, k) :
k ∈ K} and let C(H,K) = {k ∈ K : r(H, k) = r(H,K)}. When K is convex,
we say that K has normal structure if for each bounded closed convex subset W
ofK with more than one point, there exists x ∈ W such that r(W,x) < δ(W ) =
diam(W ), or equivalently, C(W,W ) is a proper subset ofW . DeMarr [6] showed
that every compact convex subset of a Banach space has normal structure, and
Alspach [1] observed that this is not true for weakly compact convex subsets.

Theorem 4.1. Let K be a non-empty compact convex subset of a Banach

space E and S be a reversible discrete semigroup which acts on K separately

continuous and left semi-asymptotic non-expansive, then S has a common fixed

point in K.

Proof. Using Zorn’s lemma we get a minimal non-empty compact convex subset
A0 ⊆ K satisfying:

(∗) There exists a collection C of closed subsets of K such that A0 = ∩C and
for each x ∈ A0, B ∈ C there is a left ideal J ⊆ S such that J(x) ⊆ B.

To see this, consider the family M of all non-empty compact convex subsets
D of K such that for each x ∈ D there is a left ideal J ⊆ S such that J(x) ⊆ D.
Order this family by reverse inclusion. Let {Dλ : λ ∈ Λ} be a chain in M,
by compactness of K, D =

⋂{Dλ : λ ∈ Λ} 6= ∅. Let x ∈ D, for each λ ∈ Λ
there is a left ideal Jλ such that Jλ(x) ⊆ Dλ. For any finite subset Γ of
Λ, using the reversibility of S and Remark 3.2(ii) we see that ∅ 6= (

⋂
{Jλ :

λ ∈ Γ})(x) ⊆ ⋂{Jλ(x) : λ ∈ Γ} ⊆ K, hence the family {Jλ(x) : λ ∈ Λ}
has finite intersection property, and by compactness of K we have ∅ 6= V =
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⋂
{Jλ(x) : λ ∈ Λ} ⊆

⋂
{Dλ : λ ∈ Λ} = D. Let J = {s ∈ S : s(x) ∈ V },

then J is a left ideal with J(x) ⊆ D: For s ∈ S and t ∈ J , t(x) ∈ V and
s(t(x)) = st(x) ∈ sV =

⋂{sJλ(x) : λ ∈ Λ} ⊆ ⋂{Jλ(x) : λ ∈ Λ} = V , therefore
st ∈ J . The rest follows from Zorn’s lemma.

We show that A0 contains a non-empty closed S-invariant subset, and hence
A0 is S-invariant. Let x ∈ A0 be fixed and C′ be the collection of all finite
intersection of sets in C . For each α ∈ C′, α = B1 ∩ · · · ∩ Bn, where Bi ∈ C,
choose left ideals Ji such that Ji(x) ⊂ Bi and let aα ∈ ∩{Ji : i = 1, . . . , n},
this last intersection is non-empty by the reversibility of S and Remark 3.2(ii).
Then Saα(x) ⊂ α, and if z is a cluster point of the net {aα(x) : α ∈ C′} where
C′ is directed by inclusion, then S(z) is a closed S-invariant subset of A0 (notice
that the action is separately continuous so S(z) must be closed in K). Now
a second application of Zorn’s lemma shows that there is a subset M ⊆ S(z)
minimal with respect to being non-empty, closed and S-invariant, note that M
is compact. We claim that M is S-preserved, i.e., M = sM for all s ∈ S. Since
S is left reversible, a straightforward induction argument shows if {s1, . . . , sn}
is any finite subset of S, then there exists a finite subset {t1, . . . , tn} of S such
that s1t1 = · · · = sntn. Hence

n⋂

i=1

siM ⊇
n⋂

i=1

si(tiM) = s1t1M 6= ∅.

Thus the family {sM : s ∈ S} has the finite intersection property, so F =
∩{sM : s ∈ S} is a non-empty compact subset of M . We now show that F is
S-preserved. Let a ∈ S be arbitrary since aS ⊆ S , we have

aF =
⋂

s∈S

asM =
⋂

t∈aS

tM ⊇
⋂

t∈S

tM = F.

Therefore aF ⊇ F . For the other inclusion, let x ∈ F , since F ⊆ cM for
some c ∈ S, there is y ∈ M such that x = cy, ax = acy. Let b ∈ S be arbitrary,
again from left reversibility of S, there is d ∈ S such that ac = bd. Hence
ax = a(cy) = b(dy) ∈ bM and aF ⊆ F . Now the minimality of M forces
F = M , hence M is S-preserved. If M is a singleton we are done, otherwise
if δ(M) = diam(M) > 0, we extract a contradiction by DeMarr’s Lemma [6].
From DeMarr’s Lemma M has normal structure, i.e.,

∃u ∈ co(M), r0 = sup{‖m− u‖ : m ∈ M} < δ(M).

For each ε > 0, B ∈ C, let

Kε,B = B
⋂
(
⋂

m∈M B[m, r0 + ε]).

Note that Kε,B is a non-empty (u ∈ Kε,B), compact and convex set. We
proceed to show that

K0 = ∩{Kε,B : ε > 0, B ∈ C}
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also has property (∗). Let x ∈ K0, ε > 0, B ∈ C be fixed. Let I ⊂ S be a left
ideal such that I(x) ⊆ B. Take L = Sc ⊆ S where c is an arbitrary element
of I. For each m ∈ M , s ∈ S, the semi-asymptotic non-expansiveness of the
action gives ‖sc(m)− sc(x)‖ ≤ ‖m− x‖ ≤ r0 + ε, so sc(x) ∈ B[sc(m), r0 + ε].
But scM = M for any s ∈ S, hence for the left ideal L = Sc we see that
L(x) ⊆ Kε,B and (∗) holds, contradicting the minimality of A0. �

Next we give a partial affirmative answer to Lau’s question in the special case
of semi-asymptotic non-expansive actions of amenable discrete semigroups.

Corollary 4.2. Let K be a non-empty, compact convex subset of a Banach

space E and S be an amenable discrete semigroup which acts on K separately

continuous and left semi-asymptotic non-expansive, then S has a common fixed

point in K.

Proof. It is enough to show that S is both left and right reversible. Let λ be
an invariant mean of S, I1 and I2 be two non-empty right ideals of S. Suppose
the contrary that I1 and I2 are disjoint. Since S is discrete, it is a normal
topological space, thus there exists f ∈ l∞(S) such that f ≡ 1 on I1 and f ≡ 0
on I2. Now if a1 ∈ I1, then la1(f) = 1. Therefore λ(f) = λ(la1(f)) = 1, but
if a2 ∈ I2, then la2(f) = 0. Hence λ(f) = λ(la2(f)) = 0, which is impossible.
Similarly S is right reversible. �

We could infer Takahashi’s theorem [16] from the above corollary:

Corollary 4.3. Let K be a non-empty, compact, convex subset of a Banach

space E and S be an amenable discrete semigroup which acts on K separately

continuous and non-expansive, then S has a common fixed point in K.

In Theorem 4.1 we have assumed that the semigroup S is reversible. The
following example shows that the right reversibility is not enough.

Remark 4.4. Let S be the left zero discrete semigroup, i.e., a discrete topologi-
cal space S with the operation ab = a for all a and b in S. Obviously S is right
reversible and S is the only left ideal, however S is not reversible. Now the
action of dual operators {(ls)∗ : s ∈ S} on compact subsets of Banach space
(l∞(S))∗ is non-expansive hence semi-asymptotic non-expansive, but there is
no common fixed point, otherwise [10] ensures that S has a left invariant mean,
which is false [5], [7].

Acknowledgement. The authors would like to thank the anonymous review-
ers for their instructive comments.
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