DOI QR코드

DOI QR Code

도로의 파손 상태를 자동관리하기 위한 동영상 기반 실시간 포트홀 탐지 시스템

Real Time Pothole Detection System based on Video Data for Automatic Maintenance of Road Surface Distress

  • 조영태 (한국건설기술연구원 도로연구소) ;
  • 류승기 (한국건설기술연구원 도로연구소)
  • 투고 : 2015.10.06
  • 심사 : 2015.11.12
  • 발행 : 2016.01.15

초록

도로의 결빙과 해빙으로 도로면의 수축과 팽창이 반복되어 도로면에서 침투한 수분이 포장면의 결합력을 약화시켜 노면홈(포트홀)을 발생시킨다. 현재의 포트홀 조사는 현장에서 육안 조사하고 기록하는 수동적인 방식으로 매년 수 만개소의 포트홀이 발생하는 것에 어려움이 발생하고 있다. 포트홀 정보를 자동으로 수집하기 위해 최근까지 가속도 센서를 이용한 기술과 레이저 스캐닝을 이용한 기술이 많이 연구되었다. 하지만, 가속도 센서 기반 기술은 낮은 인식률과 제한된 센싱 영역의 문제가 있고, 레이저 스캐닝 기반 기술은 비용이 너무 큰 문제가 있다. 따라서, 본 논문에서는 대중적으로 사용하는 차량용 블랙박스 카메라를 이용한 자동 포트홀 탐지 기술을 제안한다. 일반적으로 차량용 블랙박스 카메라에 탑재한 연산프로세서는 낮은 컴퓨팅 능력을 가지므로 포트홀 탐지 알고리즘을 그게 맞게 설계할 필요가 있다. 설계된 알고리즘을 블랙박스에 내장하여 도로 주행실험을 실시하며, 포트홀 탐지 성능을 중심으로 한 실험결과는 포트홀 탐지 정밀도, 민감도 등의 지표를 토대로 분석하고, 실시간 포토홀 탐지 기술의 현장 적용성을 확인한다.

Potholes are caused by the presence of water in the underlying soil structure, which weakens the road pavement by expansion and contraction of water at freezing and thawing temperatures. Recently, automatic pothole detection systems have been studied, such as vibration-based methods and laser scanning methods. However, the vibration-based methods have low detection accuracy and limited detection area. Moreover, the costs for laser scanning-based methods are significantly high. Thus, in this paper, we propose a new pothole detection system using a commercial black-box camera. Normally, the computing power of a commercial black-box camera is limited. Thus, the pothole detection algorithm should be designed to work with the embedded computing environment of a black-box camera. The designed pothole detection algorithm has been tested by implementing in a black-box camera. The experimental results are analyzed with specific evaluation metrics, such as sensitivity and precision. Our studies confirm that the proposed pothole detection system can be utilized to gather pothole information in real-time.

키워드

과제정보

연구 과제 주관 기관 : 한국건설기술연구원

참고문헌

  1. J. S. Miller, W. Y. Bellinger, "Distress identification manual for the long-term pavement performance program," FHWA-RD-03-031, Federal Highway Administration, Washington, DC, USA, 2003.
  2. Seoul city. Available online: http://english.seoul.go.kr (accessed on 1 September 2015)
  3. B. X. Yu, X. Yu, "Vibration-based system for pavement condition evaluation," Proc. of the 9th International Conference on Applications of Advanced Technology in Transportation, Chicago, pp. 183-189, Aug. 2006.
  4. K. D. Zoysa, C. Keppitiyagama, G. P. Seneviratne, W.W.A.T. Shihan, "A public transport system based sensor network for road surface condition monitoring," Proc. of Workshop on Networked Systems for Developing Regions, Japan, pp. 1-6, Aug. 2007.
  5. J. Erikson, L. Girod, B. Hull, "The pothole patrol: using a mobile sensor network for road surface monitoring," Proc. of the 6th International Conference on Mobile Systems, Applications, and Services, USA, pp. 29-39, Jun. 2008.
  6. A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs, L. Selavo, "Real time pothole detection using Android smart phones with accelerometers," Proc. of the International Conference on Distributed Computing in Sensor Systems and Workshops, Barcelona, pp. 1-6, Jun. 2011.
  7. A. Ghose, P. Biswas, C. Bhaumik, M. Sharma, A. Pal, A. Jha, "Road condition monitoring and alert application: Using in-vehicle Smartphone as Internet-connected sensor," Proc. of 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, Lugano, pp. 489-491, Mar. 2012.
  8. S. Raj, A. Jain, R. Misra, "Smartphone sensing for large data set collection of potholes," Proc. of MobiSys 2013, Taiwan, pp. 517-518, Jun. 2013.
  9. Q. Li, M. Yao, X. Yao, B. Xu, "A real-time 3D scanning system for pavement distortion inspection, Measurement Science and Technology," Vol. 21, pp. 15702-15709, 2009.
  10. X. Yu, E. Salari, "Pavement pothole detection and severity measurement using laser imaging," Proc. of IEEE International Conference on Electro/Information Technology, Mankato, pp. 1-5, May 2011.
  11. C. Koch, I. Brilakis, "Pothole detection in asphalt pavement images," Advanced Engineering Informatics, Vol. 25, pp. 507-515, 2011. https://doi.org/10.1016/j.aei.2011.01.002
  12. E. Buza, S. Omanovic, A. Huseinnovic, "Pothole detection with image processing and spectral clustering," Proc. of the 2nd International Conference on Information Technology and Computer Networks, Turkey, pp. 48-53, Oct. 2013.
  13. G. M. Jog, C. Koch, M. Golparvar-Fard, I. Brilakis "Pothole properties measurement through visual 2D recognition and 3D reconstruction," Proc. of the ASCE International Conference on Computing in Civil Engineering, Florida, pp. 553-560, Jun. 2012.
  14. N. Otsu, "A threshold selection method from graylevel histograms," IEEE Transactions on. Systems, Man, and Cybernetics, SMC-9, pp. 62-66, 1979.

피인용 문헌

  1. Determination of Visual Based Asphalt Pavement Crack Condition Using Deep Learning vol.20, pp.5, 2018, https://doi.org/10.7855/IJHE.2018.20.5.075