References
- American Institute of Steel Construction (AISC) (1989), Manual of Steel Construction Allowable Stress Design, 9th ed. Chicago, AISC, USA.
- American Society of Civil Engineers (ASCE) (2006), Minimum design loads for buildings and other structures (ASCE-SEI 7-05).
- Babaei, M. and Sheidaei, M. (2013), "Optimal design of double layers scallop domes using genetic algorithm", Appl. Math. Model., 37(4), 2127-2138. https://doi.org/10.1016/j.apm.2012.04.053
- Dorigo, M., Maniezzo, V. and Colorni, A. (1996), "The ant system: optimization by a colony of cooperating agents", IEEE Trans. Syst. Man. Cybern. B, 26(1), 29-41. https://doi.org/10.1109/3477.484436
- Eberhart, R.C. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan.
- Erol, O.K. and Eksin, I. (2006), "New optimization method: Big Bang-Big Crunch", Adv. Eng. Softw., 37(2), 106-111. https://doi.org/10.1016/j.advengsoft.2005.04.005
- Fogel, L.J., Owens, A.J. and Walsh, M.J. (1966), Artificial Intelligence through Simulated Evolution, Wiley, Chichester, UK.
- Goncalves, M.S., Lopez, R.H. and Miguel, L.F.F. (2015), "Search group algorithm: A new metaheuristic method for the Optimization of truss structures", Comput. Struct., 153, 165-184. https://doi.org/10.1016/j.compstruc.2015.03.003
- Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor: University of Michigan Press, USA.
- Kamyab, R. and Salajegheh, E. (2013), "Size optimization of nonlinear scallop domes by an enhanced particle swarm algorithm", Int. J. Civ. Eng., 11(2), 77-89.
- Kaveh, A. and Forhoudi, N. (2013), "A new optimization method: dolphin echolocation", Adv. Eng. Softw., 59, 53-70. https://doi.org/10.1016/j.advengsoft.2013.03.004
- Kaveh, A. and Ilchi Ghazaan, M. (2014a), "Enhanced colliding bodies optimization for design problems with continuous and discrete variables", Adv. Eng. Softw., 77, 66-75. https://doi.org/10.1016/j.advengsoft.2014.08.003
- Kaveh, A. and Ilchi Ghazaan, M. (2014b), "Computer codes for colliding bodies optimization and its enhanced version", Int. J. Optim. Civ. Eng., 4(3), 321-332.
- Kaveh, A. and Khayatazad, M. (2012), "A novel meta-heuristic method: ray optimization", Comput. Struct., 112-113, 283-294.
- Kaveh, A. and Mahdavai, V.R. (2014a), "Colliding bodies optimization: a novel meta-heuristic method", Comput. Struct., 39, 18-27.
- Kaveh, A. and Mahdavi, V.R. (2014b), "Colliding bodies optimization method for optimum design of truss structures with continuous variables", Adv. Eng. Softw., 70, 1-12. https://doi.org/10.1016/j.advengsoft.2014.01.002
- Kaveh, A. and Mahdavi, V.R. (2015), Colliding Bodies Optimization; Extensions and Applications, Springer Verlag, Switzerland.
- Kaveh, A. and Talatahari, S. (2009), "Size optimization of space trusses using Big Bang-Big Crunch algorithm", Comput. Struct., 87(17-18), 1129-1140. https://doi.org/10.1016/j.compstruc.2009.04.011
- Kaveh, A. and Talatahari, S. (2010a), "A novel heuristic optimization method: charged system search", Acta Mech., 213(3-4), 267-289. https://doi.org/10.1007/s00707-009-0270-4
- Kaveh, A. and Talatahari, S. (2010b), "Optimal design of Schwedler and ribbed domes via hybrid Big Bang- Big Crunch algorithm", J. Construct. Steel Res., 66(3), 412-419. https://doi.org/10.1016/j.jcsr.2009.10.013
- Kaveh, A. and Talatahari, S. (2010c), "Optimal design of single layer domes using meta-heuristic algorithms; a comparative study", Int. J. Space Struct., 25(4), 217-227. https://doi.org/10.1260/0266-3511.25.4.217
- Kaveh, A. and Talatahari, S. (2011), "Geometry and topology optimization of geodesic domes using charged system search", Struct. Multidiscip. Optim., 43(2), 215-229. https://doi.org/10.1007/s00158-010-0566-y
- Kociecki, M. and Adeli, H. (2013), "Two-phase genetic algorithm for size optimization of free-form steel space frame roof structures", J. Construct. Steel Res., 90, 283-296. https://doi.org/10.1016/j.jcsr.2013.07.027
- Mirjalili, S. (2015), "The ant lion optimizer", Adv. Eng. Softw., 83, 80-98. https://doi.org/10.1016/j.advengsoft.2015.01.010
- Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Comput. Aided Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015
- Sadollah, A., Eskandar, H., Bahreininejad, A. and Kim, J.H. (2015), "Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures", Comput. Struct., 149, 1-16. https://doi.org/10.1016/j.compstruc.2014.12.003
- Saka, M.P. (2007), "Optimum geometry design of geodesic domes using harmony search algorithm", Adv. Struct. Eng., 10(6), 595-606. https://doi.org/10.1260/136943307783571445
- Saka, M.P. and Geem, Z.W. (2013), "Mathematical and met heuristic applications in design optimization of steel frame structures: an extensive review", Math. Prob. Eng., Article ID 271031, 33 pages.
- Wenzhheng, L. and Jihong, Y. (2014), "Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm", J. Constr. Steel Res., 97, 59-68. https://doi.org/10.1016/j.jcsr.2014.01.015
Cited by
- Optimal dome design considering member-related design constraints vol.13, pp.5, 2016, https://doi.org/10.1007/s11709-019-0543-5
- A Comparative Study of the Structural Performance of Different Types of Reticulated Dome Subjected to Distributed Loads vol.6, pp.None, 2020, https://doi.org/10.3389/fbuil.2020.00056