Acknowledgement
Supported by : Ministry of Water Resource of China, National Natural Science Foundation of China, Central Universities, Ministry of Water Resources
References
- Carranza-Torres, C. (2004), "Some comments on the application of the Hoek-Brown failure criterion for intact rock and rock masses to the solution of tunnel and slope problems", MIR 2004-X Conference on Rock and Engineering Mechanics, Torino, 285-326.
- Carranza-Torres, C. and Fairhurst, C. (1999), "The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 36(6), 777-809. https://doi.org/10.1016/S0148-9062(99)00047-9
- Chakraborti, S., Konietzky, H. and Walter, K. (2012), "A comparative study of different approaches for factor of safety calculations by shear strength reduction technique for non-linear Hoek-Brown failure criterion", Geotech. Geol. Eng., 30(4), 925-934. https://doi.org/10.1007/s10706-012-9517-2
- Chen, W.F. (1975), Limit Analysis and Soil Plasticity, Elsevier, Amsterdam, The Netherlands.
- Chen, Z.Y. (1992), "Random trials used in determining global minimum factors of safety of slopes", Can. Geotech. J., 29(2), 225-233. https://doi.org/10.1139/t92-026
- Chen, W.F. and Liu, X.L. (1990), Limit Analysis in Soil Mechanics, Elsevier, Amsterdam, The Netherlands.
- Collins, I.F., Gunn, C.I.M., Pender, M.J. and Yan, W. (1988), "Slope stability analyses for materials with a nonlinear failure envelope", Int. J. Numer. Anal. Methods Geomech., 12(5), 533-550. https://doi.org/10.1002/nag.1610120507
- Dawson, E., You, K. and Park, Y. (2000), "Strength-reduction stability analysis of rock slopes using the Hoek-Brown failure criterion", Geotechnical Special Publication, 65-77.
- Fraldi, M. and Guarracino, F. (2009), "Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 46(4), 665-673. https://doi.org/10.1016/j.ijrmms.2008.09.014
- Fu, W. and Liao, Y. (2010), "Non-linear shear strength reduction technique in slope stability calculation", Comput. Geotech., 37(3), 288-298. https://doi.org/10.1016/j.compgeo.2009.11.002
- Hammah, R.E., Curran, J.H., Yacoub, T.E. and Corkum, B. (2004), "Stability analysis of rock slopes using the finite element method", Proceedings of the ISRM Regional Symposium, EUROCK.
- Hobbs, D. (1966), "A study of the behaviour of broken rock under triaxial compression and its application to mine roadways", Int. J. Rock Mech. Min. Sci., 3(1), 11-43. https://doi.org/10.1016/0148-9062(66)90030-1
- Hoek, E. (1983), "Strength of jointed rock masses", Geotechnique, 33(3), 187-223. https://doi.org/10.1680/geot.1983.33.3.187
- Hoek, E. (2007), Rock Mass Properties, Practical rock engineering, Rocscience Inc. http://www.rocscience.com/hoek/corner/11_Rock_mass_properties.pdf
- Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", J. Geotech. Eng. Div. ASCE, 106(GT9), 1013-1035.
- Hoek, E., Wood, D. and Shah, S. (1992), "A modified Hoek-Brown failure criterion for jointed rock masses", Proc. Rock Characterization, Symp. Int. Soc. Rock Mech.: Eurock, 92, 209-214.
- Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 edition", Proceedings of the North American Rock Mechanics Society Meeting, Toronto, Canada, January, pp. 267-273.
- Li, A.J., Merifield, R.S. and Lyamin, A.V. (2008), "Stability charts for rock slopes based on the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 45(5), 689-700. https://doi.org/10.1016/j.ijrmms.2007.08.010
- Li, A.J., Lyamin, A.V. and Merifield, R.S. (2009), "Seismic rock slope stability charts based on limit analysis methods", Comput. Geotech., 36(1-2), 135-148. https://doi.org/10.1016/j.compgeo.2008.01.004
- Lin, H., Zhong, W., Xiong, W. and Tang, W. (2014), "Slope stability analysis using limit equilibrium method in nonlinear criterion", Sci. World J.
- Michalowski, R.L. and Drescher, A. (2009), "Three-dimensional stability of slopes and excavations", Geotechnique, 59(10), 839-850. https://doi.org/10.1680/geot.8.P.136
- Michalowski, R.L. and Martel, T. (2011), "Stability charts for 3D failures of steep slopes subjected to seismic excitation", J. Geotech. Geoenviron. Eng., 137(2), 183-189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000412
- Michalowski, R.L. and You, L.Z. (2000), "Displacements of reinforced slopes subjected to seismic loads", J. Geotech. Geoenviron. Eng., 126(8), 685-694. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:8(685)
- Saada, Z., Maghous, S. and Garnier, D. (2012), "Stability analysis of rock slopes subjected to seepage forces using the modified Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 55, 45-54.
- Sharan, S.K. (2003), "Elastic-brittle-plastic analysis of circular openings in Hoek-Brown media", Int. J. Rock Mech. Min. Sci., 40(6), 817-824. https://doi.org/10.1016/S1365-1609(03)00040-6
- Shen, J. and Karakus, M. (2013), "Three-dimensional numerical analysis for rock slope stability using shear strength reduction method", Can. Geotech. J., 51(2), 164-172. https://doi.org/10.1139/cgj-2013-0191
- Shen, J., Karakus, M. and Xu, C. (2013), "Chart-based slope stability assessment using the Generalized Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 64, 210-219.
- Sheorey, P.R., Biswas, A.K. and Choubey, V.D. (1989), "An empirical failure criterion for rocks and jointed rock masses", J. Eng. Geol., 26(2), 141-159. https://doi.org/10.1016/0013-7952(89)90003-3
- Yang, X.L. and Qin, C.B. (2014), "Limit analysis of rectangular cavity subjected to seepage forces based on Hoek-Brown failure criterion", Geomech. Eng., 6(5), 503-515. https://doi.org/10.12989/gae.2014.6.5.503
- Yang, X.L., Li, L. and Yin, J.H. (2004), "Seismic and static stability analysis for rock slopes by a kinematical approach", Geotechnique, 54(8), 543-549. https://doi.org/10.1680/geot.2004.54.8.543
- Yudhbir, Y., Lemanza, W. and Prinzl, F. (1983), "An empirical failure criterion for rock masses", Proceedings of the 5th ISRM Congress, International Society for Rock Mechanics, Melbourne, Australia, April.
Cited by
- The effect of non-persistent joints on sliding direction of rock slopes vol.17, pp.6, 2016, https://doi.org/10.12989/cac.2016.17.6.723
- Modification of the gravity increase method in slope stability analysis pp.1435-9537, 2018, https://doi.org/10.1007/s10064-018-1395-2
- A novel story on rock slope reliability, by an initiative model that incorporated the harmony of damage, probability and fuzziness vol.12, pp.2, 2017, https://doi.org/10.12989/gae.2017.12.2.269
- Influence of undercut and surface crack on the stability of a vertical escarpment vol.12, pp.6, 2016, https://doi.org/10.12989/gae.2017.12.6.965
- Investigation of the effect of surcharge on behavior of soil slopes vol.13, pp.4, 2017, https://doi.org/10.12989/gae.2017.13.4.653
- Numerical analysis of a complex slope instability: Pseudo-wedge failure vol.15, pp.1, 2016, https://doi.org/10.12989/gae.2018.15.1.669
- Three-dimensional simplified slope stability analysis by hybrid-type penalty method vol.15, pp.4, 2018, https://doi.org/10.12989/gae.2018.15.4.947
- LE analysis on unsaturated slope stability with introduction of nonlinearity of soil strength vol.19, pp.2, 2016, https://doi.org/10.12989/gae.2019.19.2.179
- Stability assessment of soil slopes in three dimensions: The effect of the width of failure and of tension crack vol.22, pp.4, 2016, https://doi.org/10.12989/gae.2020.22.4.319
- Passive earth pressure for retaining structure considering unsaturation and change of effective unit weight of backfill vol.23, pp.3, 2016, https://doi.org/10.12989/gae.2020.23.3.207