Acknowledgement
Supported by : Poznan University of Technology
References
- Allen, H.G. (1969), Analysis and Design of Structural Sandwich Panels, Pergamon Press, London, UK.
- Awad, Z.K. (2013), "Optimization of a sandwich beam design: Analytical and numerical solutions", Struct. Eng. Mech., Int. J., 48(1), 93-102. https://doi.org/10.12989/sem.2013.48.1.093
- Caliri Junior, M.F., Soares, G.P., Angelico, R.A., Bresciani Canto, R. and Tita, V. (2012), "Study of an anisotropic polymeric cellular material under compression loading", J. Mater. Res., 15(3), 359-364. https://doi.org/10.1590/S1516-14392012005000034
- Chen, L. and Fatt, M.S.H. (2013), "Transversely isotropic mechanical properties of PVC foam under cyclic loading", J. Mater. Sci., 48(19), 6786-6796. https://doi.org/10.1007/s10853-013-7483-6
- Chuda-Kowalska, M. (2012), "Influence of longitudinal edge profiling in sandwich panels on interpretation of experimental results", Scientific Research of the Institute of Mathematics and Computer Science, 4(11), 19-27.
- Chuda-Kowalska, M. (2013), "Methodology of Experimental Tests of Three-layered Panels with Thin Facings", Poznan University of Technology, Poznan, Poland. [In Polish]
- Chuda-Kowalska, M., Pozorski, Z. and Garstecki, A. (2010), "Experimental determination of shear rigidity of sandwich panels with soft core", Proceedings of the 10th International Conference Modern Buildings Materials, Structures and Techniques, Vilnius, Lithuania, May.
- Chuda-Kowalska, M., Gajewski, T. and Garbowski, T. (2015), "Mechanical characterization of orthotropic elastic parameters of a foam by the mixed experimental-numerical analysis", J. Theor. Appl. Mech., 53(2), 383-394.
- Daniel, I. and Ishai, O. (1994), Engineering Mechanics of Composite Materials, Oxford University Press.
- Davies, J.M. (Editor) (2001), Lightweight Sandwich Constructions, Blackwell Science Ltd.
- EN 14509 (2013), Self-supporting double skin metal faced insulating panels - Factory made products - Specifications.
- Gibson, R. (2011), "A simplified analysis of deflections in shear deformable composite sandwich beams", J. Sandw. Struct. Mater., 13(5), 579-588. https://doi.org/10.1177/1099636211408254
- Gibson, L. and Ashby, M. (1997), Cellular Solids. Structure and Properties, Cambridge University Press.
- Gosowski, B. and Gosowski, M. (2014), "Exact solution of bending problem for continuous sandwich panels with profiled facings", J. Construct. Steel Res., 101, 53-60. https://doi.org/10.1016/j.jcsr.2014.04.033
- Hassinen, P., Martikainen, L. and Berner, K. (1997), "On the design and analysis of continuous sandwich panels", Thin-Wall. Struct., 29(1-4), 129-139. https://doi.org/10.1016/S0263-8231(97)00019-0
- Janus-Michalska, M. and Pecherski, R.B. (2003), "Macroscopic properties of open-cell foams based on micromechanical modelling", Technische Mechanik, 23(2/4), 221-231.
- Jin, H., Lu, W.-Y., Scheffel, S. and Hinnerichs, T.D. (2007), "Full-field characterization of mechanical behavior of polyurethane foams", Int. J. Solid. Struct., 44(21), 6930-6944. https://doi.org/10.1016/j.ijsolstr.2007.03.018
- Juntikka, R. and Hallstorm, S. (2007), "Shear characterization of sandwich core materials using four-point bending", J. Sandw. Struct. Mater., 9(1), 67-94. https://doi.org/10.1177/1099636207070574
- Liu, Q. and Subhash, G. (2004), "A phenomenological constitutive model for foams under large deformations", Polym. Eng. Sci., 44(3), 463-473. https://doi.org/10.1002/pen.20041
- Mills, N.J. (2007), "Polymer Foams Handbook. Engineering and Biomechanics Applications and Design Guide", Butterworth - Heinemann.
- Plantema, F.J. (1966), Sandwich Construction, John Wiley & sons, New York, NY, USA.
- Pokharel, N. and Mahendran, M. (2005), "An investigation of lightly profiled sandwich panels subjected to local buckling and flexural wrinkling effects", J. Construct. Steel Res., 61(7), 984-1006. https://doi.org/10.1016/j.jcsr.2004.12.008
- Rzeszut, K., Garstecki, A. and Czajkowski, A. (2014), "Parameter identification in FEM models of thin-walled purlins restrained by sheeting", Rec. Adv. Computat. Mech., CRC Press/Balkema, pp.121-128.
- Studzinski, R., Pozorski, Z. and Garstecki, A. (2013), "Sensitivity analysis of sandwich beams and plates accounting for variable support conditions", Bulletin of the Polish Academy of Sciences - Technical Sciences, 61(1), 201-210. https://doi.org/10.2478/bpasts-2013-0019
- Studzinski, R., Pozorski, Z. and Garstecki, A. (2015), "Structural behavior of sandwich panels with asymmetrical boundary conditions", J. Construct. Steel Res., 104, 227-234. https://doi.org/10.1016/j.jcsr.2014.10.011
- Subramanian, N. and Sankar, B.V. (2012), "Evaluation of micromechanical methods to determine stiffness and strength properties of foams", J. Sandw. Struct. Mater., 14(4), 431-447. https://doi.org/10.1177/1099636212441475
- Tita, V. and Caliri Junior, M.F. (2012), "Numerical simulation of anisotropic polymeric foams", Latin American Journal of Solids and Structures, 9(2), 259-279.
- Xie, Z., Yan, Q. and Li, X. (2014), "Investigation on low velocity impact on a foam core composite sandwich panel", Steel Compos. Struct., Int. J., 17(2), 159-172. https://doi.org/10.12989/scs.2014.17.2.159
- Zenkert, D. (1995), An Introduction to Sandwich Construction, EAMS.
- Ziolkowski, A. (2006), "Simple shear test in identification of constitutive behaviour of materials submitted to large deformations - hyperelastic materials case", Eng. Transact., 54(4), 251-269.
Cited by
- Anisotropic Large Deformation and Fatigue Damage of Rubber-fabric Braid Layered Composite Hose vol.173, 2017, https://doi.org/10.1016/j.proeng.2016.12.097
- Optimal design of sandwich panels with hybrid core 2019, https://doi.org/10.1177/1099636217742574
- Behavior of light weight sandwich panels under out of plane bending loading vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.775
- Analysis of large deformation and fatigue life of fabric braided composite hose subjected to cyclic loading vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.949
- Microstructural characterisation and experimental determination of a multiaxial yield surface for open-cell aluminium foams vol.131, 2017, https://doi.org/10.1016/j.matdes.2017.06.017
- Design of stepwise foam claddings subjected to air-blast based on Voronoi model vol.23, pp.1, 2016, https://doi.org/10.12989/scs.2017.23.1.107
- Vibration analysis of honeycomb sandwich composites filled with polyurethane foam by Taguchi Method vol.28, pp.4, 2016, https://doi.org/10.12989/scs.2018.28.4.461
- Factors governing dynamic response of steel-foam ceramic protected RC slabs under blast loads vol.33, pp.3, 2016, https://doi.org/10.12989/scs.2019.33.3.333