DOI QR코드

DOI QR Code

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao (School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology) ;
  • Zhang, Pengchong (School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology) ;
  • Liu, Jun (School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology) ;
  • Wang, Wenyuan (School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology)
  • 투고 : 2015.07.25
  • 심사 : 2015.12.28
  • 발행 : 2016.01.25

초록

A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. Ai, Z.Y., Yue, Z.Q., Tham, L.G. and Yang M. (2002), "Extended Sneddon and Muki solutions for multilayered elastic materials", Int. J. Eng. Sci., 40(13), 1453-1483. https://doi.org/10.1016/S0020-7225(02)00022-8
  2. Apsel, R.J. and Luco, J.E. (1983), "On the Green's functions for a layered half-space. Part II", Bull. Seismol. Soc. Am., 73(4), 931-951
  3. Benitez, F.G. and Rosakis, A.J. (1987), "Three-dimensional elastostatics of a layer and a layered medium", J. Elast., 18(1), 3-50. https://doi.org/10.1007/BF00155435
  4. Birk, C. and Behnke, R. (2012), "A modified scaled boundary finite element method for three-dimensional dynamic soil-structure interaction in layered soil", Int. J. Numer. Meth. Eng., 89(3), 371-402. https://doi.org/10.1002/nme.3251
  5. Boussinesq, J. (1885), Application des Potentials a Letude de Lequilibre et du Mouvement des Solides elastiques, Gauthier-Villars, Paris, Paris.
  6. Bufler, H. (1971), "Theory of elasticity of a multilayered medium", J. Elast., 1(2), 125-143. https://doi.org/10.1007/BF00046464
  7. Burmister, D.M. (1945), "The general theory of stresses and displacements in layered systems, I", J. Appl. Phys., 16(2), 89-94. https://doi.org/10.1063/1.1707558
  8. Burmister, D.M. (1945), "The general theory of stresses and displacements in layered soil systems. II", J. Appl. Phys., 16, 126-127. https://doi.org/10.1063/1.1707562
  9. Burmister, D.M. (1945), "The general theory of stresses and displacements in layered soil systems. III", J. Appl. Phys., 16(5), 296-302. https://doi.org/10.1063/1.1707590
  10. Burmister, D.M. (1956), "The stresses and displacement characteristics of a two layer rigid base soil system: Influence diagrams and practical applications", Highw. Res. Board Pr., 35, 773-814.
  11. Chan, K.S, Karasudhi, P. and Lee, S.L. (1974), "Force at a point in the interior of a layered elastic half space", Int. J. Solid. Struct., 10(11), 1179-1199. https://doi.org/10.1016/0020-7683(74)90067-5
  12. Chen, L. (2015), "Forced vibration of surface foundation on multi-layered half space", Struct. Eng. Mech., 54(4), 623-648. https://doi.org/10.12989/sem.2015.54.4.623
  13. Chen, X., Birk, C. and Song, C.M. (2015), "Transient analysis of wave propagation in layered soil by using the scaled boundary finite element method", Comput. Geotech., 63, 1-12. https://doi.org/10.1016/j.compgeo.2014.08.008
  14. Davies, T.G. and Banerjee, P.K. (1978), "The displacement field due to a point load at the interface of a two layer elastic half-space", Geotechnique, 28(1), 43-56. https://doi.org/10.1680/geot.1978.28.1.43
  15. Gilbert, F. and Backus, G.E. (1966), "Propagator matrices in elastic wave and vibration problems", Geophys., 31(2), 326-332. https://doi.org/10.1190/1.1439771
  16. Gao, Q., Zhong, W.X. and Howson, W.P. (2004), "A precise method for solving wave propagation problems in layered anisotropic media", Wave Motion, 40,191-207. https://doi.org/10.1016/j.wavemoti.2003.09.002
  17. Genes, M.C. and Kocak, S. (2005), "Dynamic soil-structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model", Int. J. Numer. Meth. Eng., 62(6), 798-823. https://doi.org/10.1002/nme.1212
  18. Harding, J.W. and Sneddon, I.N. (1945), "The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch", Math. Pr. Cambridge Philos. Soc., 41(01), 16-26. https://doi.org/10.1017/S0305004100022325
  19. Kausel, E. and Peek, R. (1982), "Dynamic loads in the interior of a layered stratum: an explicit solution", Bull. Seismol. Soc. Am., 72(5), 1459-1481.
  20. Kawana, F., Horiuchi, S., Terada, M., Kubo, K. and Matsui, K. (2012), "Theoretical solution based on volumetric strain of elastic multi layered structures under axisymmetrically distributed load", J. JPN Soc. Civil Eng., Ser. E1 (Pav. Eng.), 68(3), 383-394.
  21. Kelvin, L. (1848), "Note on the integration of the equations of equilibrium of an elastic solid", Cambridge Dublin Math. J., 3, 87-89.
  22. Khojasteh, A., Rahimian, M., Eskandari, M. and Pak, R.Y.S. (2008), "Asymmetric wave propagation in a transversely isotropic half-space in displacement potentials", Int. J. Eng. Sci., 46(7), 690-710. https://doi.org/10.1016/j.ijengsci.2008.01.007
  23. Lamb, H. (1901), "On Boussinesq's problem", Pr. London Math. Soc., 1(1), 276-284.
  24. Lin, G., Han, Z.J., Zhong, H. and Li, J.B. (2013), "A precise integration approach for dynamic impedance of rigid strip footing on arbitrary anisotropic layered half-space", Soil Dyn. Earthq. Eng., 49, 96-108. https://doi.org/10.1016/j.soildyn.2013.01.009
  25. Lin, G., Han, Z.J. and Li, J.B. (2013), "An efficient approach for dynamic impedance of surface footing on layered half-space", Soil Dyn. Earthq. Eng., 49, 39-51. https://doi.org/10.1016/j.soildyn.2013.01.008
  26. Lin, G., Han, Z.J. and Li, J.B. (2015), "General formulation and solution procedure for harmonic response of rigid foundation on isotropic as well as anisotropic multilayered half-space", Soil Dyn. Earthq. Eng., 70, 48-59. https://doi.org/10.1016/j.soildyn.2014.11.011
  27. Lu, S., Liu, J., Lin, G. and Wang, W.W. (2015), "Time-domain analyses of the layered soil by the modified scaled boundary finite element method", Struct. Eng. Mech., 54(5), 1055-1086.
  28. Luco, J.E., Apsel, R.J. (1983), "On the Green's functions for a layered half-space. Part I", Bull. Seismol. Soc. Am., 73(4), 909-929.
  29. Mindlin, R.D. (1936), "Force at a point in the interior of a semi-infinite solid", J. Appl. Phys., 7(5), 195-202.
  30. Muki, R. (1960), "Asymmetric problems of the theory of elasticity for a semi-infinite solid and a thick plate", Prog. Solid Mech., 1, 401-439.
  31. Nat, R.G., Sarva, J.S. and Sunita, R. (1992), "Static deformation of a stratified medium by general surface loads", Indian J. Pure Appl. Math., 23(9), 675-692.
  32. Plevako, V.P. (1969), "A point force inside a pair of cohering half-spaces", Soil Mech. Found. Eng., 6(3), 165-169. https://doi.org/10.1007/BF01704957
  33. Rongved, L. (1955), "Force interior to one of two joined semi-infinite solids", Proceedings of the Second Midwestern Conference on Solid Mechanics, Lafayette, USA, September.
  34. Selvadurai, A.P.S. (2001), "On Boussinesq's problem", Int. J. Eng. Sci., 39(3), 317-322. https://doi.org/10.1016/S0020-7225(00)00043-4
  35. Sneddon, I.N. (1951), Fourier Transforms, McGraw-Hill, New York, NY, USA.
  36. Sneddon, I.N. (1972), The Use Of Integral Transforms, McGraw-Hill, New York, NY, USA.
  37. Song, C.M. and Wolf, J.P. (1997), "The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics", Comput. Meth. Appl. Mech. Eng., 147, 329-355. https://doi.org/10.1016/S0045-7825(97)00021-2
  38. Stolle, D.F.E. (1989), "Axisymmetric analysis of multilayered media", Eng. Anal. Bound. Elem., 6(3), 118-122. https://doi.org/10.1016/0955-7997(89)90024-6
  39. Wang, W. and Ishikawa, H. (2001), "A method for linear elasto-static analysis of multi-layered axisymmetrical bodies using Hankel's transform", Comput. Mech., 27(6), 474-483. https://doi.org/10.1007/s004660100258
  40. Wolf, J.P. and Song, C.M. (2000), "The scaled boundary finite-element method-a primer: derivations", Comput. Struct., 78(1), 191-210. https://doi.org/10.1016/S0045-7949(00)00099-7
  41. Wolf, J.P. (2003), The Scaled Boundary Finite Element Method, John Wiley & Sons, Chichester, WS, UK.
  42. Yue, Z.Q. (1995), "On generalized Kelvin solutions in a multilayered elastic medium", J. Elast., 40(1), 1-43. https://doi.org/10.1007/BF00042082
  43. Yue, Z.Q. (1995), "Elastic fields in two joined transversely isotropic solids due to concentrated forces", Int. J. Eng. Sci., 33(3), 351-369. https://doi.org/10.1016/0020-7225(94)00063-P
  44. Yue, Z.Q., Yin, J.H. and Zhang, S.Y. (1999), "Computation of point load solutions for geo-materials exhibiting elastic non-homogeneity with depth", Comput. Geotech., 25(2), 75-105. https://doi.org/10.1016/S0266-352X(99)00010-5
  45. Zhang, Z. and Li, Z. (2011), "Analytical solutions for the layered geo-materials subjected to an arbitrary point load in the cartesian coordinate", Acta Mechanica Solida Sinica, 24(3), 262-272. https://doi.org/10.1016/S0894-9166(11)60027-X
  46. Zhong, W.X., Lin, J.H. and Gao, Q. (2004), "The precise computation for wave propagation in stratified materials", Int. J. Numer. Meth. Eng., 60(1), 11-25. https://doi.org/10.1002/nme.952
  47. Zhong, W.X., Williams, F.W. and Bennett, P.N. (1997), "Extension of the Wittrick-Williams algorithm to mixed variable", J. Vib. Acoust., 119, 334-340. https://doi.org/10.1115/1.2889728

피인용 문헌

  1. Moving load response on the stresses produced in an irregular microstretch substrate vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.175
  2. On the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall vol.6, pp.3, 2017, https://doi.org/10.12989/csm.2017.6.3.287